63 (Тросовые системы в космосе), страница 4

2016-07-30СтудИзба

Описание файла

Документ из архива "Тросовые системы в космосе", который расположен в категории "". Всё это находится в предмете "авиация и космонавтика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "авиация и космонавтика" в общих файлах.

Онлайн просмотр документа "63"

Текст 4 страницы из документа "63"

= const. Однако ре­ализация этого варианта выполнения баллонета весьма затруд­нительна. Поэтому рассмотрим случай, когда постоянной яв­ляется масса газа в объеме выносного баллонета, т. е. Т1= const.

Будем считать, что вес гондолы и конструкции основного аэростата Go, объем Vо = const обеспечивает подъемную силу I Fcp, которая удерживает всю систему в начальный момент на уровне исходного дрейфа Нср. Объем троса не сказывается на величине силы Fcp. В качестве подъемного газа в обеих оболочках используется водород. При принятых обозначениях и заполненном (выполненном) баллонете на высоте Hср уравне­ние равновесия сил, действующих на систему в проекции на вертикальную связь, запишем в виде

G1+G0=Fcp+F1(H), (IV. 12)

где Fcp = [pa (Н) — рв]ср Vog (Н) — архимедова сила на уровне исходного дрейфа; F1(Н) = [рa (Н) — рв]1 V1 g (Н) — архимедовa сила выполненного баллонета; ра(Н)=р (Н)/RаT (Н), рв=p(H)/RвТ(H)—плотность газа соответственно атмосферы и водорода в баллонете.

В случае, когда в выносном баллонете постоянной является масса подъемного газа, при анализе изменения подъемной силы следует учитывать, что во время спуска в нижние слои выносной баллонет силами внешнего давления будет изменять свой объем. Обозначим объем заполненного баллонета на высоте, где его подъемная сила равна общему весу конструкции G1, через V1. Этот объем должен быть минимальным, поскольку при подъеме вверх расширение газа не должно привести к разрыву оболочки баллонета. Следовательно, на некоторой наименьшей высоте Н объем баллонета равен V1. Газ внутри него имеет одинаковые с внешней средой температуру и давление, т. е. находится с ней в термодинамическом равновесии. Исходя из этих предпосылок рассчитаем параметры баллонета. Подъемная сила баллонета

F1=V1[pa(H)-pв]g(H). (IV. 13)

Вес всей выносной конструкции слагается из веса научной аппаратуры G2, оболочки баллонета G3 и подъемного газа G4 т. е.

С1=С2+Сз+С4. (IV. 14)

В положении равновесия F1 = G1, или

V1 [p1a(H)–p1в]g(H)=(m2 + m3 + m4) g (H). (IV. 15)

Поскольку V1 = m4/р1в, уравнение (IV. 15) запишем в виде

P1a(H)/p1в-2=m2/m4+m3/m4 (IV 16)

Масса научной аппаратуры остается неизменной, т. е. m2/m4 = const, поэтому, варьируя отношения p1a(Н)/р1в и m3/m4, можно выбирать необходимые параметры, задавая другие. Однако следует отметить следующее обстоятельство. При подъе­ме вверх выносного баллонета аэростата-носителя, переходя­щего при этой вариации на некоторую высоту Hср, газ в баллонете будет расширяться до объема V2. Чтобы стенки не были напряженными, у баллонета должен быть предусмотрен избы­точный объем, т. е. V2> V1. При постоянной массе газа m4 его объем при термодинамических параметрах высоты Hср. составит:

V2 =m4/pср. Rв Tср. Следовательно, увеличение объема определяется выражением

v=v2-v1=m4Rв (IV. 17)

Это, в свою очередь, приведет к увеличению веса оболочки на величину Gз. Если массовая плотность материала оболочки постоянна и равна рк, то, представляя баллонет в виде круго­вого цилиндра, добавку веса дополнительного объема можно определить как

Gз=dLpкg (1 V. 18)

где L высота дополнительного цилиндрического объема;  — толщина материала оболочки; d диаметр цилинд­ра.

Поскольку для кругового цилиндра v =d^2/4L, выражение (IV. 18) можно преобразовать к виду

Gз=4pкvg/d. (IV. 19)

Таким образом, с учетом увеличения веса оболочки необхо­димо в уравнении (IV. 16) массу оболочки записывать как сумму масс оболочки для положения равновесия и величины m3=Gз/g. Однако увеличение массы (соответственно веса) обо­лочки приведет к необходимости уменьшения величины m2/m4 если высоту нижнего равновесия оставим прежней. В против­ном случае для определения параметров баллонета следует использовать методы последовательного приближения.

Т а б л и ц а 5

Показатель

Высокомодульные волокна

Стальная проволока

Капрон

Прочность на разрыв, Па

(2З)*10^9

3*10^9

3,2*10^9

(3,24)*10^9

удлинение, %

2—4

1—4

1—3

8—15

Модуль упруго­сти, Па

(I0/15)* 10^10

(11/15)* 10^10

(6/7.5)*10^10

(5/5.5)*10^10

Плотность, кг/м'

1300—1430

1350

2550

7800

1350

Число двойных изгибов, цикл

3000

200—250

20

8000— 12000

Рабочая темпе-ратура, К

523

573

773

773

393

Исходя из необходимости первоочередного исследования об­лачного покрова планеты, выносной баллонет должен Опус­каться до высоты (3040)*10^3м. В диапазоне высот (3056)-10^3 м ветры имеют различную скорость, перепад температур достигает 130 °С, плотность и вяз­кость среды также изменяются. Все эти факторы приводят к тому, что выносной баллонет становится своеобразным аэроди­намическим тормозом, увеличивающим усилие, действующее на трос. В случае, если на этих высотах будут развиваться турбулентности и порывы ветра, у системы баллонет — носи­тель появится путевая раскачка. Возможны и продольные (по высоте) колебания, увеличивающие нагрузку на тросовую под­веску. Однако, как было показано выше, такие колебания в довольно плотной атмосфере Венеры быстро затухают. Харак­теристики прочностных свойств тросов из различных материа­лов приведены в табл. 5. Видно, что наибольший интерес представляют высокомодульные волокна, которые по всем парамет­рам могут обеспечить подвеску баллонета на длине троса примерно 20*10^3 м.

Для определения предельной длины троса в системе носи­тель — баллонет находим максимальное напряжение в сече­нии троса, когда отсутствуют рывки и подъем груза вверх рав­номерный. Наиболее напряженным является сечение в начале троса. Сила, действующая на трос, слагается из веса выносного баллонета G1, веса сматываемого троса Gтр, подъемной силы баллонета F1, возрастающей при подъеме на величину инер­ционной силы Fин и силы аэродинамического сопротивле­ния FR.

Таким образом, при спуске действующая на трос сила опи­сывается выражением Fтр=G1+Gтр-F1. (IV.21)

где Gтр = ртрLтрSтр; F1=V1[p1a(H)–p1a]g(H), напряжение в этом случаеcxv^2

= G1+Gтр-F1/Sтр (IV.22)

Здесь Sтр- поперечное сечение троса; ртр —плотность мате­риала троса.

При подъеме с ускорением а инерционная сила Fин=а(m1+mтр); аэродинамическое сопротивление FR=0,5Cx v ^2pa(H)S, где S — поверхность выносного баллонета; v скорость подъема.

Следовательно, в момент ускоренного подъема напряжение в наиболее опасном сечении троса

= G1+Gтр-F1+Fин+FR/Sтр (IV.23)

Предельную длину троса для квазистатического состояния подвески можно определить из уравнения (IV.22)

Lтр=1/pтр*(-G1/Sтр+F1/ Sтр).

Для определения возможностей аэростата с выносным баллонетом произведём численные оценки параметров системы. Допустим, что вес G1= 1000 H. Глубина погружения (нижний уровень) H1=30*10^3 м, уровень дрейфа аэростата-носителя Hср = 50*10^3 м. Определим параметры системы, если оболоч­ка выносного баллонета выполнена из пластика толщиной 40*10:-6 м, плотностью 2*10^3 кг/м^3; диаметр оболочки d = 1 м.

Параметры атмосферы Венеры: 1) для высоты Hср = 50х10^3 м температура Тcр = 350 К, давление рср=1,275 х10^5 Па, плотность рср а(H)=1,932 кг/м^3, рв=8,844х10^-2 кг/м^3; 2) для высоты H1 = 30*10^3 температура T1=492 К, давление p1 == 9,35*10^5 Па, плотность p1a(Н)=9,95 кг/м^3, р1в == 4,61*10^-1 кг/м^3. Газовая постоянная во­дорода Rв == 4118,8 Дж/(кг*К). Ускорение свободного паде­ния g (Н) = 8,87 м/с^2.

Расчет параметров баллонета. Исходя из принятых дан­ных, объем баллонета в равновесии V1 = F1/[p1a(Н)-p1в]g(Н) = 11,9 м^3; масса водорода в баллонете m4=V1p1в = 5,485 кг; дополнительный объем v=m4Rв х (Tcp/pcp-T1/p1)=50,1 м^3; общий объем баллонета V2=V1+v =62 м^3; масса m3=(d^2/2+4v1/d)pк=3,9 кг; масса дополнительного объема m3=4pкv/d=16,1 кг. Следователь­но, m3+ m3=20 кг.

Из уравнения (IV. 16) следует, что безразмерная масса научной аппаратуры и гондолы не должна превышать вели­чины

m2/m4=p1a(H)/ p1в-2-(m3+m3)/m4

Практически во всем диапазоне высот в атмосфере Венеры отношения плотностей атмосферы и водорода p1a (H)/ p1в =21,5 с точностью до десятых. Следовательно, m2/m4=19,5-(m3+ m3)/m4 откуда m2/m4=15,9; масса научной аппаратуры m2=15,9 m4=87 кг. Таким образом, общая масса выносного баллонета m1=m2+m3+m4112,5 кг.

Начальное условие G1 == 1000 Н дает массу m1G1/g (Н)=112,7 кг, расхождение с вычисленной составляет 0,2 кг (1,77 Н), или 0,2% заданного значения силы F1.

Расчет параметров аэростата-носителя. Для численных оценок принимаем: начальная масса собственно аэростата-носителя m0=100 кг; общая масса системы m0+m1=212,7кг (или вес системы G0+G1=1887 Н). Следовательно, объем оболочки на Hср=50-10^3 м составляет: V0=Fср/[pа(Н)-pв]срg(Н)=115,4 м^3.

Если объем сферический, то его радиус rs3м. Массовая плотность собственно аэростата-носителя ран=m0/v0=0,866 кг/м^3.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
426
Средний доход
с одного платного файла
Обучение Подробнее