165798 (Извлечение тиоционата натрия из отработанных растворов для прядения акрилового волокна), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Извлечение тиоционата натрия из отработанных растворов для прядения акрилового волокна", который расположен в категории "". Всё это находится в предмете "химия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "химия" в общих файлах.

Онлайн просмотр документа "165798"

Текст 2 страницы из документа "165798"

В России широко применяются в производстве полиакрилонитрильных волокон водные растворы роданида натрия. Для растворения полиакрилонитрила применяется раствор роданида натрия, содержащий 51% соли. Меньшая или большая концентрация роданида увеличивает вязкость прядильных растворов.

Полная сольватация роданида в водных растворах наступает при содержании 3,96 г-моль/1000 мл (вес. 25%) воды, однако при этом он еще не приобретает способности растворять ПАН.

Способность к кристаллизации вызывает необходимость хранения 51%-ных растворов роданида натрия при температуре выше 15°С. Растворы роданида натрия стабильны, но вызывают сильную коррозию металлов и в первую очередь железа. Содержание примесей металлов в растворе не должно превышать 2-10-4%, так как они отрицательно влияют на процесс полимеризации акрилонитрила.

На практике наибольшее распространение в качестве растворителей ПАН получили диметилформамид НСОN(СН3)2 и 50 - 52%-ные водные растворы роданистого натрия NaSCN. Соответственно различают два промышленных способа получения полиакрилонитрильных волокон и нитей диметилформамидный (на основе ДМФА) и солевой (на основе NaSCN).

До недавнего времени достоинством растворов роданистого натрия как растворителя являлась возможность синтеза ПАН методом полимеризации в растворе, что позволяло значительно сократить технологию получения прядильного раствора ПАН.

Следует отметить, что применение водных солей роданида натрия в технологии прядильного раствора ПАН сопряжено с рядом негативных моментов. Это, во-первых, сложная и многостадийная регенерация отработанного растворителя; во-вторых, повышенная коррозийность оборудования, что требует соответствующего аппаратурного оформления, в-третьих, неидеальные санитарно-гигиенические условия труда: работа с NaSCN приводит к кожным заболеваниям и заболеваниям внутренних органов, большие энергетические затраты.

К сожалению, на отечественных предприятиях по выпуску волокна нитрон до настоящего времени преобладает «солевой» способ (на основе NaSCN) [4].

Наряду с преимуществами метод получения прядильного раствора путем полимеризации соответствующего мономера или смеси мономеров в растворе имеет и серьезные недостатки. При этом методе резко уменьшается возможность выпуска волокон различного ассортимента. В первую очередь это относится к получению ПАН волокон, так как при получении прядильного раствора путем растворной полимеризации в заданных условиях и в присутствии заданного инициатора можно получить только гомополимер или сополимер только одного вида, и, следовательно, из него может быть получено волокно только одного вида. При получении прядильного раствора путем растворения готового полимера или сополимера всегда существует возможность варьировать состав выпускаемого волокна заменой одного полимера или сополимера другим или смесью двух или трех полимеров. Это значительно расширяет возможность модифицировать и тем самым разнообразий ассортимент вырабатываемых волокон. В настоящее время, подавляющее число ПАН волокон получают на основе сополимеров различного состава [5].

Технология получения прядильного раствора

Независимо от используемого растворителя при непрерывной технологии получения прядильного раствора в производстве волокна нитрон технологический процесс включает следующие основные стадии [5]:

  • подготовку мономеров и растворителя;

  • приготовление реакционной смеси;

  • полимеризацию с получением прядильного раствора;

  • демономеризацию прядильного раствора с удалением не вступивших в реакцию мономеров;

  • регенерацию не вступивших в реакцию полимеризации мономеров и передачу их на стадию приготовления реакционной смеси;

  • подготовку прядильного раствора к формованию (смешение различных партий, деаэрацию и фильтрацию).

Принципиальная технологическая схема получения прядильного раствора в производстве волокна нитрон приведена на рис.1.

В соответствии с приведенной схемой исходные мономеры (АН, МА, ИтNa) проходят через теплообменник-выравниватель температур (поз.2), по межтрубному пространству которого протекает растворитель – 50 – 52%-ный водный раствор роданистого натрия или ДМФА. Подготовленные таким образом мономеры и растворитель объемными дозаторами (поз.3) подаются в аппарат приготовления реакционной смеси – смеситель (поз.1), куда одновременно поступают инициатор процесса полимеризации – порофор и регулятор молекулярной массы – двуокись тиомочевины (ДОТ). Как правило, используют смесь ДОТ и изопропилового спирта в соотношении 2:1 с целью уменьшения количества образующегося продукта разложения ДОТ – сульфата натрия. В смеситель (поз.1) поступают также рециркулируемые мономеры.

Приготовленная реакционная смесь передается в аппарат полимеризации – реактор (поз.4). Реактор представляет собой цилиндрическую емкость с трехлопастной мешалкой. Реакционная смесь поступает в нижнюю часть реактора и заполняет весь его объем, получаемый прядильный раствор отбирается из верхней части реактора. Из реактора (поз.4) прядильный раствор ПАН, содержащий 30 – 50% не вступивших в реакцию полимеризации мономеров, проходит в аппарат отгонки мономеров демономеризатор (поз.5), где из тонкого слоя прядильного раствора, стекающего по стенкам аппарата и тарелкам, в условиях вакуума удаляются не вступившие в реакцию мономеры. Удаленные мономеры проходят сепаратор-конденсатор мономеров (поз.6) и возвращаются в технологический цикл (поз.1) в виде рециркулируемых мономеров. А демономеризованный прядильный раствор от нескольких реакторов поступает в бак меланжирования (усреднения) (поз.7) и затем в аппарат удаления пузырьков воздуха и азота (продукта разложения порофора) – деаэратор (поз.8), работающий по тому же принципу, что и демономеризатор [7]. Деаэрированный прядильный раствор ПАН с целью завершения его подготовки к формованию фильтруется на рамных фильтр-прессах и передается в прядильно-отделочный цех на формование.

Рис.1. Принципиальная технологическая схема получения прядильного раствора в производстве волокна нитрон:

1- смеситель реагентов; 2 – выравниватель температур; 3 - дозирующая установка; 4 – реактор; 5 – демономеризатор; 6 – сепаратор-конденсатор; 7 – бак меланжирования; 8 – деаэратор; 9 – фильтр-пресс

Изменение свойств акрилонитрильных волокон при замене итаконовой кислоты в сополимере

Для получения ПАНВиН используют различные сополимеры. В отечественной технологии производства волокна нитрон получил применение тройной сополимер, в состав входят акрилонитрил, метилакрилат и итаконовая кислота.

Учитывая то, что итаконовую кислоту получают из пищевого продукта лимонной кислоты, проводятся работы по замене итаконовой на другие сополимеры, введение которых улучшало бы накрашиваемость волокна нитрон. Так, например, рассматривалась возможность использования для этих целей металлилсульфоната, 2-акриламид-2-метилпропансульфоновой кислоты [6]. Однако из-за сложности обеспечения чистоты получаемого прядильного раствора, изменения условий полимеризации эти сополимеры не получили практического промышленного применения [4].

Ташкентскими исследователями еще в 1990 г. установлена принципиальная возможность замены итаконовой кислоты на акриловую (АК) [7].

В России итаконовую кислоту не производят, и поэтому ее замена на более дешевый и недефицитный продукт чрезвычайно важна. Для решения технологических задач необходимы глубокие исследования вопросов влияния АК на процесс полимеризации, реологические свойства растворов, равномерность и интенсивность крашения катионными красителями.

Процесс полимеризации осуществлялся в лабораторных условиях с моделированием производственного режима (температура - 70°С, рН = 5) и сохранением некоторых компонентов состава - порофора в качестве инициатора полимеризации, диоксида тиомочевины - в качестве регулятора молекулярной массы и роданида натрия - в качестве растворителя.

При исследованиях изменяли продолжительность процесса полимеризации (12, 45 и 75 мин) и состав сополимера - АН:МА:АК (93,5:5,2:1,31; 92,3:5,1:2,6; 89,8:5,0:5,2 %). Образцы получали в виде пленок путем растворения сополимера в диметилформамиде с последующим отливом.

Анализ результатов показал, что оптимальной является продолжительность полимеризации 75 мин. За этот период, при содержании в сополимере 1,3% ИК, выход полимера составлял 87%. Наличие в сополимере такого же количества АК приводит к увеличению выхода полимера до 91,3%. С увеличением содержания АК в 2 и 4 раза отмечен снижение выхода полимера.

От состава сополимера зависят и его реологические свойства. Замена ИК на такое же количество АК приводит к некоторому снижению вязкости, но с увеличением количества АК вязкость возрастает, а при 4-кратном увеличении АК - возрастает значительно, затрудняя формование волокна.

При изучении свойств сформованных пленок установлено, что их линейная плотность практически не зависит от состава сополимера и соотношения компонентов в нем. По показателям механических свойств образцы на основе сополимеров с АК превосходят промышленный образец, причем их свойства значительно зависят от содержания АК в сополимере. Большей разрывной нагрузкой и удлинением обладают образцы, содержащие 2,6 % АК.

Замена одного компонента, по данным ТГА, не оказывает существенного влияния на термостойкость сополимера. Образцы имеют аналогичные начальные температуры термолиза: промышленный - 230°С, содержащий 1,3 и 2,6% АК - также 230°С, 5,2% АК - 235°С. После завершения основных стадий термолиза (500°С) выход карбонизованного остатка (КО) составляет у промышленного образца 71% (масс), у образца, содержащего 2,6 % АК - 72%. Однако увеличение количества АК до 5,2 % приводит к снижению выхода КО до 66%. Замена ИК на АК значительно уменьшает экзотермические эффекты процесса циклизации, что может положительно проявиться при переработке нитей из такого сополимера в углеродные.

Состав сополимера анализировали методом ИК-спектроскопии. Сравнительный анализ ИК-спектров показал совпадение полос поглощения всех валентных колебаний при длине волн от 800 до 3200 см-1. Однако отмечена большая интенсивность полос поглощения валентных колебаний групп СООН при 3640 см-1 у волокон, содержащих 1,3% АК, по сравнению с промышленным образцом. Увеличение содержания АК в 2 и 4 раза практически не влияет на интенсивность частоты колебаний групп СООН. Следовательно, изменения в спектрах поглощения связаны с химической природой АК.

Зависимость интенсивности окраски пленок катионными красителями от состава сополимера изучали путем определения коэффициента отражения в видимой части спектра. Установлено, что при замене 1,3% ИК на такое же количество АК интенсивность окраски возрастает во всей области спектра. С увеличением содержания АК интенсивность окраски в еще большей степени усиливается, что может позволить сократить расход дорогостоящих красителей. Следовательно, без изменения технологических параметров процесса, только замена ИК на АК в составе сополимера и изменение соотношения компонентов в сополимере в производстве ПАН волокон позволит:

- применить более доступный и недефицитный отечественный компонент сополимера;

- увеличите выход сополимера на 3,1 % без ухудшения физико-механических и физико-химических свойств волокон;

- придать волокнам большую активность при окрашивании катионными красителями.

Авторами [8-10] с целью улучшения качества и расширения ассортимента полиакрилонитрильных (ПАН) волокон, а также замены итаконовой кислоты (ИК) при получении волокна нитрон предлагаются волокна на основе тройного сополимеров акрилонитрила (АН) с метилакрилатом (МА) и N-винилкапролактамом (ВКЛ).

Синтез и формование волокон проводили по технологическому режиму, принятому для волокна нитрон. Волокна формовали на малой лабораторной прядильной установке из 13%-ных прядильных растворов сополимеров в роданиде натрия.

Установлено, что при увеличении содержания ВКЛ до 8% (масс.) прочность волокон при растяжении повышается, тогда как усадка и удлинение при разрыве уменьшаются. Увеличение суммарного содержания вторых компонентов (МА и ВКЛ) до 20% не приводит к существенному изменению свойств волокон по сравнению с 10%-ным их содержанием. Этот факт, вероятно, объясняется особенностями структуры волокон.

На физико-механические показатели волокон влияет не только состав сополимеров, но и степень пластификационной вытяжки. С ее увеличением заметно возрастают усадка и прочность, снижаются линейная плотность и удлинение волокон.

При рассмотрении основных физических свойств химических волокон необходимо, прежде всего, оценивать их надмолекулярную структуру, которая во многом определяет эти свойства. Судя по поперечным срезам волокон на основе тройных сополимеров АН с МА и ВКЛ, все образцы имеют овальное поперечное сечение. С увеличением степени пластификационной вытяжки форма поперечного среза несколько изменяется, в целом оставаясь бобовидной. Степень однородности волокон между собой и вдоль оси по размерам, наличию дефектов, способности к свечению в поляризованном свете, набуханию в муравьиной кислоте значительно различается в зависимости от состава сополимера и степени пластификационной вытяжки. Самым тонким, наиболее однородным, бездефектным и более ориентированным (по способности к двойному лучепреломлению) оказалось волокно, полученное из сополимера с высоким содержанием ВКЛ (АН:МА:ВКЛ= 90.21:2.05:7.85). Волокно же, содержащее 1,8% ВКЛ и 8,41% МА - наиболее дефектное, с округлым поперечным сечением и неоднородным свечением в поляризованном свете.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5231
Авторов
на СтудИзбе
425
Средний доход
с одного платного файла
Обучение Подробнее