85706 (Корни многочленов от одной переменной)

2016-07-30СтудИзба

Описание файла

Документ из архива "Корни многочленов от одной переменной", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85706"

Текст из документа "85706"

Новосибирский государственный педагогический университет.

Математический факультет.

Кафедра алгебры.

Курсовая работа по математике.

Многочлены

Выполнила: студентка 35гр.

Голобокова О.В.

Научный руководитель:

старший преподаватель

Гейбука С.В.

г. Новосибирск, 2008

Содержание

Введение

§1. Многочлены от одной переменной

Понятие многочлена. Степень многочлена

Равенство многочленов. Значение многочленов

Операции над многочленами

Схема Горнера

Корни многочленов

Кратные корни многочлена

Рациональные корни многочлена

§ 2. Задачи о многочленах

Заключение

Список литературы


Введение

Тема моей курсовой работы "Многочлены".

В ней я хочу дать понятие многочлена, определить операции над ними, рассмотреть способы нахождения остатков при делении: схема Горнера. А так же рассмотреть виды корней: рациональные, кратные.

Для этого мне нужно изучить научную и методическую литературу, подобрать и решить задачи по данной теме, включая олимпиадные.

В первой главе своей работы я рассматриваю основное понятие многочлена, операции над ними, ввожу определение и основные понятия схемы Горнера, рассматриваю кратные и рациональные корни многочлена. Во второй главе решаю задачи, включая олимпиадные.


§1. Многочлены от одной переменной

Понятие многочлена. Степень многочлена

Многочленом от переменной х будем называть выражение вида

anxn+an-1xn-1+... +a1x+a0,где n - натуральное число; аn, an-1,..., a1, a0 - любые числа, называемые коэффициентами этого многочлена. Выражения anxn, an-1xn-1,..., a1х, a0 называются членами многочлена, а0 - свободным членом.

Часто будем употреблять и такие термины: an - коэффициент при хn, аn-1 - коэффициент при хn-1 и т.д.

Примерами многочленов являются следующие выражения: 4+2х3+ (-3) х3+ (3/7) х+ ; 2+0х+3; 0х2+0х+0. Здесь для первого многочлена коэффициентами являются числа 0, 2, - 3, 3/7, ; при этом, например, число 2 - коэффициент при х3, а - свободный член.

Многочлен, у которого все коэффициенты равны нулю, называется нулевым.

Так, например, многочлен 2+0х+0 - нулевой.

Из записи многочлена видно, что он состоит из нескольких членов. Отсюда и произошел термин ‹‹многочлен›› (много членов). Иногда многочлен называют полиномом. Этот термин происходит от греческих слов πολι - много и νομχ - член.

Многочлен от одной переменной х будем обозначать так: f (x), g (x), h (x) и т.д. например, если первый приведённых выше многочленов обозначить f (x), то можно записать: f (x) =0x4+2x3+ (-3) x2+3/7x+ .

Для того чтобы запись многочлена выглядела проще и выглядела компактнее, договорились о ряде условностей.

Те члены не нулевого многочлена, у коэффициенты равны нулю, не записывают. Например, вместо f (x) =0x3+3x2+0x+5 пишут: f (x) =3x2+5; вместо g (x) =0x2+0x+3 - g (x) =3. Таким образом, каждое число - это тоже многочлен. Многочлен h (x), у которого все коэффициенты равны нулю, т.е. нулевой многочлен, записывают так: h (x) =0.

Коэффициенты многочлена, не являющиеся свободным членом и равные 1, тоже не записывают. Например, многочлен f (x) =2x3+1x2+7x+1 можно записать так: f (x) =x3+x2+7x+1.

Знак ‹‹-›› отрицательного коэффициента относят к члену, содержащему этот коэффициент, т.е., например, многочлен f (x) =2x3+ (-3) x2+7x+ (-5) записывают в виде f (x) =2x3-3x2+7x-5. При этом, если коэффициент, не являющийся свободным членом, равен - 1, то знак "-" сохраняют перед соответствующим членом, а единицу не пишут. Например, если многочлен имеет вид f (x) =x3+ (-1) x2+3x+ (-1), то его можно записать так: f (x) =x3-x2+3x-1.

Может возникнуть вопрос: зачем, например, уславливаться о замене 1х на х в записи многочлена, если известно, что 1 х=х для любого числа х? Дело в том, что последнее равенство имеет место, если х - число. В нашем же случае х - элемент произвольной природы. Более того запись 1х мы пока не имеем права рассматривать как произведение числа 1 и элемента х, ибо, повторяем х - это не число. Именно таким обстоятельством и вызваны условности в записи многочлена. И если мы дальше говорим все-таки о произведении, скажем, 2 и х без всяких оснований, то этим допускаем некоторую нестрогость.

В связи с условностями в записи многочлена обращаем внимание на такую деталь. Если имеется, например, многочлен f (x) =3х3-2х2-х+2, то его коэффициенты - это числа 3, - 2, - 1,2. Конечно, можно было бы сказать, что коэффициентами являются числа 0, 3, - 2, - 1, 2, имея в виду такое представление данного многочлена: f (x) =0x4-3x2-2x2-x+2.

В дальнейшем для определенности будем указывать коэффициенты, начиная с отличного от нуля, в порядке их следования в записи многочлена. Так, коэффициентами многочлена f (x) =2x5-x являются числа 2, 0, 0, 0, - 1, 0. Дело в том, что хотя, например, член с х2 в записи отсутствует, это лишь означает, что его коэффициент равен нулю. Аналогично свободного члена в записи нет, поскольку он равен нулю.

Если имеется многочлен f (x) =anxn+an-1xn-1+... +a1x+a0 и an≠0, то число n называют степенью многочлена f (x) (или говорят: f (x) - n-й степени) и пишут ст. f (x) =n. В этом случае an называется старшим коэффициентом, а anxn - старшим членом данного многочлена.

Например, если f (x) =5x4-2x+3, то ст. f (x) =4, старший коэффициент - 5, старший член - 4.

Рассмотрим теперь многочлен f (x) =a, где а - число, отличное от нуля. Чему равна степень этого многочлена? Легко заметить, что коэффициенты многочлена f (x) =anxn+an-1xn-1+... +a1x+a0 пронумерованы справа налево числами 0, 1, 2, …, n-1, n и если an≠0, то ст. f (x) =n. Значит, степень многочлена - это наибольший из номеров его коэффициентов, отличных от нуля (при той нумерации, о которой только что говорилось). Вернемся теперь к многочлену f (x) =a, a≠0, и пронумеруем его коэффициенты справа налево числами 0, 1, 2, … коэффициент а при этом получит номер 0, а так как все остальные коэффициенты - нулевые, то это и есть самый большой из номеров коэффициентов данного многочлена, отличных от нуля. Значит ст. f (x) =0.

Таким образом, многочлены нулевой степени - это числа, отличные от нуля.

Осталось выяснить, как обстоит дело со степенью нулевого многочлена. Как известно, все его коэффициенты равны нулю, и поэтому к нему нельзя применить данное выше определение. Так вот, условились нулевому многочлену не присваивать никакой степени, т.е. что он не имеет степени. Такая условность вызвана некоторым обстоятельством, которые будут рассмотрены несколько позже.

Итак, нулевой многочлен степени не имеет; многочлен f (x) =a, где а - число, отличное от нуля, имеет степень 0; степень же всякого другого многочлена, как легко заметить, равна наибольшему показателю степени переменной х, коэффициент при которой равен нулю.

В заключение напомним еще несколько определений. Многочлен второй степени f (x) =ax2+bx+c называется квадратным трехчленом. Многочлен первой степени вида g (x) =x+c называется линейным двучленом.

Равенство многочленов. Значение многочленов

Два многочлена f (x) и g (x) считаются равными, если равны их коэффициенты при одинаковых степенях переменной х и свободные члены (или, короче, равны их соответствующие коэффициенты). В этом случае пишут: f (x) =g (x).

Например, многочлены f (x) =x3+2x2-3x+1 и g (x) =2x2-3x+1 не равны, ибо у первого из них коэффициент при х3 равен 1, а у второго - нулю (согласно принятым условностям мы можем записать: g (x) =0x3+2x2-3x+1. В этом случае пишут: f (x) ≠g (x). Не равны и многочлены h (x) =2x2-3x+5, s (x) =2x2+3x+5, так как у них коэффициенты при х различны. А вот многочлены f1 (x) =2x5+3x3+bx+3 и g1 (x) =2x5+ax3-2x+3 равны тогда и только тогда, когда а=3, а b=-2.

Пусть даны многочлен f (x) =anxn+an-1xn-1+... +a1x+a0 и некоторое число с. Число f (c) =ancn+an-1cn-1+... +a1c+a0 называется значением многочлена f (x) при х=с.

Таким образом, чтобы найти f (c), в многочлен вместо х нужно подставить с и провести необходимые вычисления. Например, если f (x) =2x3+3x2-x+5, то f (-2) =2 (-2) 3+ (-2) 2- (-2) +5=3.

Рассмотрим многочлен f (x) =a и найдем, например, f (2). Для этого в многочлен вместо х надо подставить число 2 и произвести необходимые вычисления. Однако в нашем случае f (x) =a и переменной х в явном виде нет. Вспомним, что рассматриваемый многочлен можно записать в виде f (x) =0x+a. Теперь все в порядке, можно подставить значение х=2: f (2) =0 2+a=a. Заметим, что для данного многочлена f (c) =a при любом с. В частности, нулевой многочлен при любом с принимает значение, равное нулю.

Вообще говоря, многочлен при различных значениях переменной х может принимать различные значения. Нас же довольно часто будут интересовать те значения х, при которых многочлен принимает значение 0. Число с называется корнем многочлена f (x), если f (c) =0.

Например, если f (x) =x2-3x+2, то числа 1 и 2 являются корнями этого многочлена, ибо f (1) =0 и f (2) =0. А вот многочлен f (x) =5 корней вообще не имеет. В самом деле, при любом значении х он принимает значение 5, а значит, никогда не принимает значение 0. Для нулевого же многочлена, как легко заметить, каждое число является корнем.

Поиск корней многочленов является одной из важнейших задач алгебры. Находить корни линейных двучленов и квадратных трехчленов учат еще в школе. Что касается многочленов более высоких степеней, то для них такая задача является весьма трудной и не всегда разрешимой. В дальнейшем мы неоднократно будем ею заниматься. А сейчас заметим только, что найти корни многочлена f (x) =anxn+an-1xn-1+... +a1x+a0 и решить уравнение anxn+an-1xn-1+... +a1x+a0=0 - это эквивалентные задачи. Поэтому, научившись находить корни многочлена, мы научимся решать соответствующие уравнения, и наоборот.

Обратим внимание на различие между двумя утверждениями: "многочлен f (x) равен нулю (или, что то же самое, многочлен f (x) - нулевой)" и "значение многочлена f (x) при х=с равно нулю". Например, многочлен f (x) =x2-1 не равен нулю, ибо у него есть ненулевые коэффициенты, а его значение при х=1 равно нулю. Короче, f (x) ≠0, а f (1) =0.

Между понятиями равенства многочленов и значения многочлена существует тесная взаимосвязь. Если даны два равных многочлена f (x) и g (x), то их соответствующие коэффициенты равны, а значит, f (c) = g (c) для каждого числа с. Другими словами, если f (c) = g (c) для каждого числа c, то равны ли многочлены f (x) и g (x)? Попробуем ответить на этот вопрос в частном случае, когда f (x) = px2 +qx+r, а g (x) = kx+m. Так как f (c) = g (c) для каждого числа с, то, в частности, f (0) = g (0), f (1) = g (1), f (-1) = g (-1).

Вычислив фигурирующие в этих равенствах значения рассматриваемых многочленов, получим систему

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее