85688 (Клеточные пространства)

2016-07-30СтудИзба

Описание файла

Документ из архива "Клеточные пространства", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85688"

Текст из документа "85688"

Содержание

Введение

1. Основные определения

1.1Терминологические замечания

1.2 Комментарии к определению клеточного пространства

2. Клеточные разбиения классических пространств

2.1 Сферы и шары

2.2 Проективные пространства

2.3 Многообразия Грассмана

2.4 Многообразия флагов

2.5 Классические поверхности

3. Гомотопические свойства клеточных пространств

3.1 Теорема Борсука о продолжении гомотопий

3.2 Следствия из теоремы Борсука

3.3 Теорема о клеточной аппроксимации

3.4 Доказательство леммы о свободной точке

3.5 Первые применения теоремы о клеточной аппроксимации

Заключение

Список использованных источников


Введение

В системе высшего образования весьма значительную роль играет гомотопическая топология, которая почти никогда не рассматривает совершенно произвольных топологических пространств. Обычно она изучает пространства с той или иной дополнительной структурой, причем со времен основоположника топологии Анри Пуанкаре рассматривают структуры двух типов. Первый тип - структуры аналитического происхождения: дифференциальная, риманова, симплектическая и т.д. Структуры второго, более важного для нас типа - комбинаторные структуры. Они заключаются в том, что пространство расчленено на более или менее стандартные, и изучение пространства сводится к изучению взаимного расположения этих частей.

Одна из важнейших из комбинаторных структур - клеточная структура. В гомологии она является эффективным вычислительным средством.

Данная работа посвящена изучению клеточной структуры, приведению некоторых теорем, свидетельствующие о полезности понятия клеточного пространства для гомотопической топологии., а так же подтверждающие необходимость изучения рассмотренной темы и всей топологии в целом, как основы для систематизации знаний по многим разделам высшей математики.


1. Основные определения

Клеточное пространство - это хаусдорфово топологическое пространство К, представленное в виде объединения попарно непересекающихся множеств ("клеток") таким образом, что для каждой клетки существует отображение q-мерного шара в К (характеристическое отображение, отвечающее клетке ), сужение которого на внутренность Int шара представляет собой гомеоморфизм Int . При этом предполагаются выполненными следующие аксиомы.

(С) Граница = клетки содержится в объединении конечного числа клеток с r < q.

(W) Множество F К замкнуто тогда и только тогда, когда для любой клетки замкнуто пересечение F .

(Иногда характеристические отображения считаются фиксированными, т.е. рассматриваются как элемент структуры. Разумеется, такая модификация определения будет явно оговариваться)


1.1Терминологические замечания

1. Термин "клеточное пространство" не является абсолютно общепринятым: говорят также "клеточное разбиение" или "клеточный комплекс" или "CW-комплекс". Выражение "клеточное разбиение" мы будем употреблять как синоним выражения "разбиение пространства на клетки"; термин же "комплекс" будет у нас употребляться исключительно в алгебраическом значении.

2. Обозначения аксиом (С) и (W) являются стандартными; они происходят от английских слов "closure finite" и "weak topology".

Клеточное подпространство клеточного пространства K - это замкнутое его подмножество, составленное и целых клеток; клеточные подпространства являются самостоятельными клеточными пространствами. Важнейшие клеточные подпространства клеточного пространства - его остовы: n-й остов есть объединение всех клеток размерности n (по определению, размерность клетки равна q). Стандартные обозначения для n-го остова пространства или X. Кстати, некоторые говорят "n-мерный остов", но это неправильно: размерность клеточного пространства определяется как верхняя грань размерностей его клеток, и, очевидно, размерность n-го остова меньше или равна n. Клеточное пространство называется конечным (счетным), если оно состоит из конечного (счетного) числа клеток.

Заметим, что для конечных клеточных пространств аксиомы (С) и (W) проверять не нужно: они выполняются автоматически.

1.2 Комментарии к определению клеточного пространства

1. Замыкание клетки может не быть клеточным пространством. Пример: разбиение букета на клетки , и ( ) - делает его клеточным пространством, но если а не есть отмеченная точка окружности , то замыкание последней клетки не является подпространством (см. рис.1).

Рис.1

2. Из (W) не следует (С). Разбиение диска D2 на внутренность Int D2 и отдельные точки граничной окружности удовлетворяет аксиоме (W) (потому что всегда F Int D 2 = F), но не удовлетворяет аксиоме (С).

3. Из (С) не следует (W). Возьмем бесконечное семейство │α=1,2,… копий отрезка I, отождествим нулевые концы и топологизируем получившееся множество при помощи метрики: расстояние между точками , равно , если , и равно , если . Разбиение построенного пространства на множества и оставшиеся точки не удовлетворяет, из условий, входящих в определение клеточного пространства, только аксиоме (W): точки составляют последовательность, сходящуюся к 0, и, значит, незамкнутое множество, но пересечение этой последовательности с замыканием любой клетки замкнуто.

Кстати, если, как это только что было, разбиение пространства на клетки удовлетворяет всем условиям из определения клеточного пространства, кроме аксиомы (W), то можно ослабить в этом пространстве топологию, определив новую топологию при помощи аксиомы (W). Эта процедура называется "клеточным ослаблением топологии".


2. Клеточные разбиения классических пространств

2.1 Сферы и шары

При конечном n имеется два канонических клеточных разбиения сферы . Первое состоит из двух клеток: точки (любой, скажем, (1,0,... ..., 0)) и множества (рис.2а). Характеристическое отображение , отвечающее второй клетке, - это обычное "сворачивание" сферы из шара; годится, например, отображение, действующее по формуле , где (рис.3).

Рис.2

Рис.3

Другое каноническое клеточное разбиение сферы состоит из 2n +2 клеток : клетка состоит из точек , у которых и (рис.2б). Заботиться о характеристических отображениях здесь не приходится: замыкание каждой клетки очевидным образом гомеоморфно шару соответствующей размерности.

Заметим, что оба описанные клеточные разбиения сферы получаются из единственного возможного разбиения сферы (двоеточия) посредством применения канонической конструкции клеточного разбиения надстройки: в первом случае нужно брать надстройку над сферой как над пространством с отмеченной точкой, а во втором случае - обыкновенную надстройку.

Существует, конечно, масса других клеточных разбиений сферы : ее можно разбить на 3n+1 - 1 клеток как границу (n+1) - мерного куба, на клеток - как границу (n+1) - мерного симплекса и т.п. .

Все описанные клеточные разбиения, кроме самого первого, годятся для сферы .

Клеточное разбиение шара можно получить из любого клеточного разбиения сферы путем присоединения одной клетки Int с характеристическим отображением id: . Наиболее экономное клеточное разбиение шара состоит, таким образом, из трех клеток. Правда, ни одно из этих разбиений не годится для шара .

2.2 Проективные пространства

При отождествлении диаметрально противоположных точек сферы клетки - клеточного разбиения склеиваются между собой и получается (n+1) - клеточное разбиение пространства R , по одной клетке в каждой размерности q≤n. Это же разбиение можно описать так:

R .

Еще одно описание этого разбиения: имеется цепочка включений

R R R R ,

и мы полагаем eq = R - R . Характеристическим отображением для eq служит композиция канонической проекции Dq R и включения R R . При n= наша конструкция доставляет клеточное разбиение пространства R , содержащее по одной клетке каждой размерности. Конструкция имеет также комплексный, кватернионный и кэлиев аналоги. Она дает: разбиение пространства С на клетки размерностей 0, 2, 4,..., 2n; разбиение пространства H на клетки размерностей 0, 4, 8,..., 4n; разбиение пространства СаР2 на клетки размерностей 0,8,16; клеточные разбиения пространств С и H , содержащие по одной клетке в каждой размерности, делящейся, соответственно, на 2 и 4. Например, пространство С разбивается на клетки

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5193
Авторов
на СтудИзбе
434
Средний доход
с одного платного файла
Обучение Подробнее