50192 (Решение дифференциальных уравнений. Обзор), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Решение дифференциальных уравнений. Обзор", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "50192"

Текст 2 страницы из документа "50192"

набор точек в которых нужно найти решение;

само дифференциальное уравнение, записанное в некотором специальном виде, который будет описан ниже.

Один из наиболее эффективных алгоритмов интегрирования ОДУ основан на численном методе Рунге-Кутты четвертого порядка. Функция, реализующая этот метод, имеет вид rkfixed (y,x1,x2, npoints,D)

Здесь:

y-вектор начальных условий размерности n, где n- порядок дифференциального уравнения или число уравнений в системе (если решается система уравнений);

x1, x2 – граничные точки интервала, на котором ищется решение дифференциального уравнения. Начальные условия ,заданные в векторе y,- это значение решения в точке x1;

npoints- число точек (не считая начальной точки), в которых ищется приближенное решение. При помощи этого аргумента определяется число строк (1+npoints) в матрице, возвращаемой функцией rkfixed;

D(x,y) – функция,возвращающая значение в виде вектора n элементов, содержащих первые производные неизвестных функций.

2.1 Метод Эйлера

Если задачу об отыскании всех решений дифференциального уравнения удается свести к конечному числу алгебраических операций, операций интегрирования и дифференцирования известных функций, то говорят, что уравнение интегрируется в квадратурах. В приложениях крайне редко встречаются уравнения, интегрируемые в квадратурах. Поэтому для исследования дифференциальных уравнений широко используются приближенные, численные методы их решения.

Численное решение на отрезке [a, b] задачи Коши

y' = f(x, y), y(a) =y0

состоит в построении таблицы приближенных значений

y0, y1, ..., yi, ... yN

решения y(x) в узлах сетки

a=x0 < x1 < ... < xi < ...< xN=b, y(xi)@ yi.

Если xi = a+ i h, h=(b-a)/ N, то сетка называется равномерной.

Численный метод решения задачи Коши называется одношаговым, если для вычисления решения в точке x0 + h используется информация о решении только в точкеx0.

Простейший одношаговый метод численного решения задачи Коши - метод Эйлера. В методе Эйлера величины yi вычисляются по формуле

yi+1 = yi + h f(xi , yi), i = 0, 1

Найдем методом Эйлера на [0, 1] с шагом h=0.2 приближенное решение задачи Коши

Для того чтобы изменить стиль изображения, щелкните дважды по полю графиков и установите соответствующие параметры

Определим правую часть уравнения

Расчетные формулы метода Эйлера для решения этой задачи имеют вид

x0=0, y0= 1, xi+1 = xi + 0.2, yi+1 = yi + 0.2(sinxi - cosyi), i =0, 1, ..., 4.

Изобразим приближенное решение графически.

y' = sin x – cos y, y(0)=1.

Определим диапазон изменения номера точки i=0,1, ..., 4

Знак присваивания можно ввести щелчком по соответствующей позиции в панели Evaluation.

Определим начальное условие - решение в начальной точке

Для того чтобы ввести символ диапазона изменения индекса , щелкните по соответствующей позиции в панели Matrix или введите с клавиатуры символ ("точка с запятой")

Определим шаг формулы Эйлера - шаг интегрирования

Для того чтобы ввести нижний индекс переменной, щелкните по соответствующей позиции в панели Matrix или в панели Calculator

Определим по формулам Эйлера значения приближенного решения в узлах сетки

Выведем в рабочий документ вычисленные значения решения

Построим график найденного решения y(x)

Для того чтобы вывести значение переменной в рабочий документ, введите имя переменной, знак равенства и щелкните по рабочему документу вне выделяющей рамки

Для того чтобы построить график приближенного решения, щелкните в панели Graph по пиктограмме декартова графика, введите в помеченной позиции возле оси абсцисс обозначение компонент вектора, содержащего значения узлов сетки, а в позиции возле оси ординат - обозначение компонент вектора, содержащего значения приближенного решения в узлах сетки; затем щелкните по свободному месту в рабочем документе вне поля графиков.

2.2 Метод Эйлера с шагом h/2.

Метод Эйлера допускает простую геометрическую интерпретацию. Пусть известна точка (xi,yi) интегральной кривой уравнения y'=f(x, y).

Касательная к интегральной кривой уравнения, проходящая через эту точку, определяется уравнением

y = yi + f(xi , yi)(x-xi).

Следовательно, вычисленная методом Эйлера точка (xi+1 ,yi+1 ),

Где xi+1=xi+h, yi+1=yi + h f(xi , yi), лежит на этой касательной.

Найдем методом Эйлера на [0, 1] с шагом h=0.2 и с шагом h=0.1 приближенное решение задачи Коши

y' = sin x – cos y, y(0)=1.

Изобразим приближенные решения графически.

Расчетные формулы метода Эйлера для решения этой задачи имеют вид

x0=0, y0= 1, xi+1 = xi + 0.2, yi+1 = yi + 0.2(sinxi - cosyi), i =0, 1, ..., 4

xi+1 = xi + 0.2, yi+1 = yi + 0.2(sinxi - cosyi), i =0, 1, ..., 9

Определим правую часть уравнения

Знак присваивания можно ввести щелчком по соответствующей позиции в панели Evaluation.

Определим диапазон изменения номера точки i=0,1, ..., 4 для вычислений с шагом h=0.2

Для того чтобы ввести символ диапазона изменения индекса , щелкните по соответствующей позиции в панели Matrix или введите с клавиатуры символ ("точка с запятой")

При решении задачи с шагом h=0.2 назовем шаг h1, аргумент - x1, а решение - y1.

Определим начальное условие

Для того чтобы ввести нижний индекс переменной, щелкните по соответствующей позиции в панели Matrix или в панели Calculator

Определим шаг формулы Эйлера - шаг интегрирования

Определим по формулам Эйлера значения приближенного решения в узлах сетки

Выведем в рабочий документ вычисленные значения решения

Для того чтобы вывести значение переменной в рабочий документ, введите имя переменной, знак равенства и щелкните по рабочему документу вне выделяющей рамки

Построим график найденного решения y1(x1)

Для того чтобы построить график приближенного решения, щелкните в панели Graph по пиктограмме декартова графика, введите в помеченной позиции возле оси абсцисс обозначение компонент вектора, содержащего значения узлов сетки, а в позиции возле оси ординат - обозначение компонент вектора, содержащего значения приближенного решения в узлах сетки; затем щелкните по свободному месту в рабочем документе вне поля графиков.

Определим диапазон изменения номера точки i=0,1, ..., 9 для вычислений с шагом h=0.1

Для того чтобы ввести символ диапазона изменения индекса , щелкните по соответствующей позиции в панели Matrix или введите с клавиатуры символ ("точка с запятой")

При решении задачи с шагом h=0.1 назовем шаг h2, аргумент - x2, а решение - y2.

Определим начальное условие

Для того чтобы ввести нижний индекс переменной, щелкните по соответствующей позиции в панели Matrix или в панели Calculator

Определим шаг формулы Эйлера - шаг интегрирования

Определим по формулам Эйлера значения приближенного решения в узлах сетки

Выведем в рабочий документ вычисленные значения решения. Для сравнения рядом выведены значения решения, вычисленные с большим шагом

Построим график решения y2(x2)

Построим на одном графике оба приближенные решения

Для того чтобы одновременно построить графики нескольких функций от разных аргументов, щелкните в панели Graph по пиктограмме декартова графика, введите в помеченной позиции у оси абсцисс имя первого аргумента, запятую, имя второго аргумента, и т.д., разделяя имена аргументов запятой.

Аналогично, в позиции возле оси ординат введите имя функции первого аргумента, запятую, имя функции второго аргумента и т.д. разделяя имена функций запятой.

Когда функции определены, щелкните по рабочему документу вне поля графиков.

2.3 Метод Рунге – Кутты

Методом Рунге-Кутты четвертого порядка точности называют одношаговый метод, относящийся к широкому классу методов Рунге-Кутты. В этом методе величины yi+1 вычисляются по следующим формулам:

yi+1 = yi + h (k1 + 2k2 + 2k3 + k4)/6 , i = 0, 1, ...

k1 = f(xi , yi),

k2 = f(xi+h/2, yi+hk1/2),

k3 = f(xi+h/2, yi+hk2/2),

k4 = f(xi+h, yi+hk3).

Найдем на [0, 1] приближенное решение задачи Коши y' = sin x – cos y, y(0)=1методом Рунге-Кутты 4-го порядка с шагом h=0.2 и методом Эйлера с тем же шагом.Изобразим оба приближенные решения графически

Для решения задачи методом Рунге-Кутты воспользуемся функцией rkfixed

Определим начальное условие - решение в начальной точке

Для того чтобы ввести нижний индекс переменной, щелкните по соответствующей позиции в панели Matrix или в панели Calculator

Определим правую часть уравнения

Знак присваивания можно ввести щелчком по соответствующей позиции в панели Evaluation.

Вычислим приближенное решение на отрезке [0,1], выполнив n=1/h=5 одинаковых шагов, методом Рунге-Кутты 4-го порядка; обозначим приближенное решение Y

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Нет! Мы не выполняем работы на заказ, однако Вы можете попросить что-то выложить в наших социальных сетях.
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
4144
Авторов
на СтудИзбе
667
Средний доход
с одного платного файла
Обучение Подробнее