49829 (Суперэлементное моделирование пространственной системы "плита – грунтовое основание"), страница 3

2016-07-30СтудИзба

Описание файла

Документ из архива "Суперэлементное моделирование пространственной системы "плита – грунтовое основание"", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "49829"

Текст 3 страницы из документа "49829"

Применение МКЭ для решения системы “плита-основание” приводит к системе линейных алгебраических уравнений с ленточной симметричной матрицей. Ширина ее полуленты зависит от порядка нумерации узлов и определяется по формуле: B= (R+1) Q, где R - максимальная разность разностей номеров узлов конечных элементов, Q - число неизвестных (степеней свободы) в каждом узле.


6. Алгоритмы построения и решения дискретной модели

Первый этап алгоритма построения дискретной модели представляет определение расчетной области. Расчетная область представляется правильной геометрической фигурой, размеры которой определяются нулевыми перемещениями на всех ребрах, кроме верхнего. В нашем случае- параллелепипед.

Второй этап- дискретизация расчетной области, учитывающая особенности структуры грунтового основания. В результате строится нерегулярная решетка с массивами шагов по координатным осям. Каждый параллелепипед дискретной решетки делится на шесть тетраэдральных элементов.

Для каждого конечного элемента (тетраэдра) необходимо задать характеристики: модуль упругости, коэффициент Пуассона.

Третий этап - задание краевых условий. Граничные условия расчетной области определяются системой внешних сил и выбором размеров расчетной области (этап 1). Система внешних сил задается в виде вектора нагрузок, определенного для всех узлов расчетной области. С каждым узлом связано три значения нагрузки: одно по направлению оси OX, второе по направлению оси OY, третье по направлению оси OZ. Вектор нагрузок задается на верхнем ребре. На всех остальных обычно задаются нулевые перемещения. Четвертый этап - формирование матрицы жесткости. Построение матрицы жесткости производится с учетом ее особенностей: симметричности, ленточности. Матрица жесткости (МЖ) размещается в ОП упакованной в прямоугольник, т.е. хранится верхняя полулента. Для построения МЖ используется аналитический алгоритм построения [1].

Согласно которому матрица жесткости имеет вид:

где

где i - номер узла, связанного с узлами j; j=1,2,3,4;

Пятый этап - учет граничных условий в МЖ. Используется вектор усилий и вектор корректировки, с помощью которого описываются задаваемые граничные значения перемещений. Учёт граничных условий приводит к изменению матрицы жёсткости [K] и векторов узловых сил и перемещений. Матрица [K] уже не будет сингулярной.

Шестой этап - решение системы линейных алгебраических уравнений. На этом этапе используется метод квадратного корня, учитывающий упаковку МЖ в прямоугольник.

Этот метод состоит в следующем:

Если матрица симметрическая, то её можно представить следующим образом:

A=S*DS,

Где S - верхняя треугольная матрица с положительными элементами на главной диагонали; D - диагональная матрица, с элементами +1 или -1 на главной диагонали; S* - нижняя треугольная матрица. Коэффициенты и вычисляются по формулам:

i=j то, ;

;

i

;

В том случае, если матрица A самосопряжённая и положительно определённая, то матрицу D можно опустить, так как она будет единичной. Метод осуществляется по следующей схеме:

сначала решаем уравнение S*Y=B

затем уравнение SX=Y, находя решение системы.

Наша работа заключается в решении СЛАУ методом квадратного корня, используя ленточную симметрическую матрицу, компактно упакованную.

Полуленточная матрица системы строиться следующим образом:

В методе квадратного корня используется функция, с помощью которой меняются оба индекса.


7. Описание и инструкция работы с приложением

Входными данными для приложения являются: количество узлов по осям, массивы узлов, модуль упругости и коэффициент Пуассона для каждого симплекс-элемента, а также вектора узловых сил и пермещений.

Пользователю имеет возможность задавать характеристики каждого отдельного симплекс-элемента (тетраэдра). Благодаря этому система “плита-грунтовое основание" может быть рассмотрена как неоднородная.

Ввод вектора узловых сил осущестляется путем ввода величины силы узлу к которому она прилагается. Вектор перемещений сразу предполагает перемещения по трем осям. Однако пользователь имеет возможность запретить перемещения по какой-либо оси для каждого узла.

Выходными характеристиками приложения являются перемещениями в необходимых узлах. По анализу которых делается вывод об осадке плиты.

8. Верификация приложения

Рассмотрим следующий пример:



Однородная плита располагается вертикально на жёстком основание. Усилие Р равномерно распределено по верхнему основанию плиты. Дискретизация пластины производится путём разбиения ее на конечные элементы (тетраэдры). Узлы и полученные конечные элементы нумеруются. Программное приложение рассчитывает значения перемещений в каждом узле модели.

При введении в качестве параметров модели тестового примера следующих величин: нагрузка на плиту Р = 100кг,

параметры плиты: модуль упругости Е = 360 кг/см2, коэффициент Пуассона =0.2, h=100см, l =100см, приращения по Ox,Oy, Oz =50см.

Разрешены только вертикальные перемещения.

Полученный результат имеет вид:

вертикальные перемещения в узлах:

1.09651.03951.06241.0996

0.53560.53080.53420.5345

0.00000.00000.00000.0000


Заключение

В курсовой работе реализовано моделирование расчета осадок большеразмерной плиты на основании системного подхода и метода конечных элементов. Разработаны алгоритмы построения матрицы жесткости упакованной в прямоугольник, решения системы линейных алгебраических уравнений для упакованной МЖ. Спроектирован удобный интерфейс ввода исходных данных и вывода результатов. Создан программный продукт моделирования расчета осадок в среде Delphi 5.0.

Проведена верификация программного продукта на основе задачи, имеющей аналитическое решение. Она показала хорошее совпадение результатов с точностью примерно 90-95%.

Разработанное приложение может быть использовано для предварительных расчетов оснований фундаментов плит с учетом сложной структуры основания в инженерной практике на этапе проектирования.


Список использованных источников

  1. Быховцев В.Е. Компактный алгоритм построения матрицы жесткости в МКЭ. - Известия АН БССР, серия физ. - матем. наук, №1, 1983, с.34-37.

  2. Быховцев В.Е., Ермашов В.П., Богданова Т.Г. Влияние формы фундамента на его осадки. - Фундаменты на искусственных основаниях в условиях Белорусской ССР, сб. научных трудов, Минск: БелНИИС, 1986, с.47-55.

  3. Винокуров Е.Ф. Расчёт оснований и фундаментов. - Минск: АН БССР, 1960. - 294 с.

  4. Галлагер Р. Метод конечных элементов: основы. - М.: "Мир", 1984. - 428с.

  5. Ильюшин А.А. Механика сплошной среды: Учебник. - 3-е изд. - Москва: Издательство МГУ, 1990. - 310 с.

  6. Зенкевич О. Метод конечных элементов в технике: Перев. с англ. - Москва: "Мир", 1975. - 544с.

  7. Лурье А.И. Нелинейная теория упругости. - Москва: "Наука". Главная редакция физико-математической литературы, 1980. - 512 с.

  8. Партон В.З. Перлин П.И. Методы математической теории упругости: Учебное пособие. - Москва: Наука. Главная редакция физико-математической литературы, 1981. - 688 с.

  9. Сесков В.Е., Быховцев В.Е., Лях В.Н., Цурганова Л.А. Определение несущей способности и осадки микросвайных фундаментов в выштампованных скважинах методом вычислительного и физического экспериментов. - Основания и фундаменты, сб. н. трудов, Минск: НПТО "Белстройнаука", 1986, с.26-35.

  10. Сивцова Е.П. Расчёт осадки одиночной сваи с учётом работы острия. - Сб. трудов НИИ оснований №53, М., 1963.

  11. Цытович H.А. Механика грунтов. - Москва: Госстройиздат, 1963. - 636 с.

Приложение

(основные функции, процедуры и алгоритмы приложения)

функции подсчета коэффициентов b, c, d используемых для формирования матрицы жесткости function det (a11,a12,a13,a21,a22,a23,a31,a32,a33: integer): real;

begin

det: =a11*a22*a33-a11*a23*a32+a12*a23*a31-

a12*a21*a33+a13*a21*a32-a13*a22*a31;

end;

function formb (a,ntetr: integer): real;

begin

if a=cells [ntetr,1] then formb: =-det (1,kordy [ntetr,2],kordz [ntetr,2],1,kordy [ntetr,3],kordz [ntetr,3],1,kordy [ntetr,4],kordz [ntetr,4]);

if a=cells [ntetr,2] then formb: =det (1,kordy [ntetr,3],kordz [ntetr,3],1,kordy [ntetr,4],kordz [ntetr,4],1,kordy [ntetr,1],kordz [ntetr,1]);

if a=cells [ntetr,3] then formb: =-det (1,kordy [ntetr,4],kordz [ntetr,4],1,kordy [ntetr,1],kordz [ntetr,1],1,kordy [ntetr,2],kordz [ntetr,2]);

if a=cells [ntetr,4] then formb: =det (1,kordy [ntetr,1],kordz [ntetr,1],1,kordy [ntetr,2],kordz [ntetr,2],1,kordy [ntetr,3],kordz [ntetr,3]);

end;

function formc (a,ntetr: integer): real;

begin

if a=cells [ntetr,1] then formc: =det (1,kordx [ntetr,2],kordz [ntetr,2],1,kordx [ntetr,3],kordz [ntetr,3],1,kordx [ntetr,4],kordz [ntetr,4]);

if a=cells [ntetr,2] then formc: =-det (1,kordx [ntetr,3],kordz [ntetr,3],1,kordx [ntetr,4],kordz [ntetr,4],1,kordx [ntetr,1],kordz [ntetr,1]);

if a=cells [ntetr,3] then formc: =det (1,kordx [ntetr,4],kordz [ntetr,4],1,kordx [ntetr,1],kordz [ntetr,1],1,kordx [ntetr,2],kordz [ntetr,2]);

if a=cells [ntetr,4] then formc: =-det (1,kordx [ntetr,1],kordz [ntetr,1],1,kordx [ntetr,2],kordz [ntetr,2],1,kordx [ntetr,3],kordz [ntetr,3]);

end;

function formd (a,ntetr: integer): real;

begin

if a=cells [ntetr,1] then formd: =-det (1,kordx [ntetr,2],kordy [ntetr,2],1,kordx [ntetr,3],kordy [ntetr,3],1,kordx [ntetr,4],kordy [ntetr,4]);

if a=cells [ntetr,2] then formd: =det (1,kordx [ntetr,3],kordy [ntetr,3],1,kordx [ntetr,4],kordy [ntetr,4],1,kordx [ntetr,1],kordy [ntetr,1]);

if a=cells [ntetr,3] then formd: =-det (1,kordx [ntetr,4],kordy [ntetr,4],1,kordx [ntetr,1],kordy [ntetr,1],1,kordx [ntetr,2],kordy [ntetr,2]);

if a=cells [ntetr,4] then formd: =det (1,kordx [ntetr,1],kordy [ntetr,1],1,kordx [ntetr,2],kordy [ntetr,2],1,kordx [ntetr,3],kordy [ntetr,3]);

end;

процедура формирования матрицы жесткости

procedure formprmatr (a,b,k: integer);

var ro,G,lya,Mu,E,vv: extended;

begin

Mu: =0.2; E: =360;

G: =E/ (2* (1+Mu));

lya: = (2*Mu*G) / (1-2*Mu);

ro: =2*G+lya;

vv: =1/ (360*V [ (k div 7) +1]);

prmatr [3*a-2,3*b-3*a+1]: =prmatr [3*a-2,3*b-3*a+1] +vv* (formb (a,k) *formb (b,k) *ro+G* (formc (a,k) *formc (b,k) +formd (a,k) *formd (b,k)));

prmatr [3*a-2,3*b-3*a+2]: =prmatr [3*a-2,3*b-3*a+2] +vv* (formb (a,k) *formc (b,k) *lya+formc (a,k) *formb (b,k) *G);

prmatr [3*a-2,3*b-3*a+3]: =prmatr [3*a-2,3*b-3*a+3] +vv* (formb (a,k) *formd (b,k) *lya+formd (a,k) *formb (b,k) *G);

if (3*a-1<=3*b-2) then prmatr [3*a-1,3*b-3*a]: =prmatr [3*a-1,3*b-3*a] +vv* (formc (a,k) *formb (b,k) *lya+formb (a,k) *formc (b,k) *G);

prmatr [3*a-1,3*b-3*a+1]: =prmatr [3*a-1,3*b-3*a+1] +vv* (formc (a,k) *formc (b,k) *ro+G* (formb (a,k) *formb (b,k) +formd (a,k) *formd (b,k)));

prmatr [3*a-1,3*b-3*a+2]: =prmatr [3*a-1,3*b-3*a+2] +vv* (formc (a,k) *formd (b,k) *lya+formd (a,k) *formc (b,k) *G);

if (3*a<=3*b-2) then prmatr [3*a,3*b-3*a-1]: =prmatr [3*a,3*b-3*a-1] +vv* (formd (a,k) *formb (b,k) *lya+formb (a,k) *formd (b,k) *G);

if (3*a<=3*b-1) then prmatr [3*a,3*b-3*a]: =prmatr [3*a,3*b-3*a] +vv* (formd (a,k) *formc (b,k) *lya+formc (a,k) *formd (b,k) *G);

prmatr [3*a,3*b-3*a+1]: =prmatr [3*a,3*b-3*a+1] +vv* (formd (a,k) *formd (b,k) *ro+G* (formc (a,k) *formc (b,k) +formb (a,k) *formb (b,k)));

end;

функция для получения необходимого элемента в прямоугольной матрице

function value (i: integer; j: integer): real;

begin

if (j=i+m) then value: =0;

if (i>j) then value: =prmatr [j, i-j+1] ;

if (i<=j) then value: =prmatr [i,j-i+1] ;

end;

функция для получения элементов прямоугольной матрицы с учетом ее сжатия

function value2 (i,j: integer): real;

var k,n1: integer;

begin

n1: =kx*ky*kz*3;

for k: =1 to n1 do

begin

if (P [k] =1) and (i>=k) then inc (i);

if (P [k] =1) and (j>=k) then inc (j);

end;

value2: =value (i,j);

end;

процедура сжатия силового вектора

procedure compressf (k: integer);

var i: integer;

begin

for i: =k to 3*kx*ky*kz do F [i]: =F [i+1] ;

inc (Count);

end;

функция, возвращающая значение сигнума от числа

function sign (f: real): shortint;

begin

if f=0 then sign: =0

else sign: =round (abs (f) /f);

end;

алгоритм занесения координат и номеров узлов тетраздров

point: =1;

kp: =ky*kz;

ntetr: =1;

x: =0;

for i: =1 to kx-1 do

begin

y: =0;

for j: =1 to ky-1 do

begin

z: =0;

for k: =1 to kz-1 do

begin

k1: =point+kp;

k2: =point+kz+1;

z: =z+hz [k] ;

cells [ntetr,1]: =k2; kordx [ntetr,1]: =x; kordy [ntetr,1]: =y+hy [j] ; kordz [ntetr,1]: =z;

cells [ntetr,2]: =point; kordx [ntetr,2]: =x; kordy [ntetr,2]: =y; kordz [ntetr,2]: =z-hz [k] ;

cells [ntetr,3]: =point+1; kordx [ntetr,3]: =x; kordy [ntetr,3]: =y; kordz [ntetr,3]: =z;

cells [ntetr,4]: =k1; kordx [ntetr,4]: =x+hx [i] ; kordy [ntetr,4]: =y; kordz [ntetr,4]: =z-hz [k] ;

cells [ntetr+1,1]: =k2; kordx [ntetr+1,1]: =x; kordy [ntetr+1,1]: =y+hy [j] ; kordz [ntetr+1,1]: =z;

cells [ntetr+1,2]: =point+1; kordx [ntetr+1,2]: =x; kordy [ntetr+1,2]: =y; kordz [ntetr+1,2]: =z;

cells [ntetr+1,3]: =k1+1; kordx [ntetr+1,3]: =x+hx [i] ; kordy [ntetr+1,3]: =y; kordz [ntetr+1,3]: =z;

cells [ntetr+1,4]: =k1; kordx [ntetr+1,4]: =x+hx [i] ; kordy [ntetr+1,4]: =y; kordz [ntetr+1,4]: =z-hz [k] ;

cells [ntetr+2,1]: =k2; kordx [ntetr+2,1]: =x; kordy [ntetr+2,1]: =y+hy [j] ; kordz [ntetr+2,1]: =z;

cells [ntetr+2,2]: =k1+1; kordx [ntetr+2,2]: =x+hx [i] ; kordy [ntetr+2,2]: =y; kordz [ntetr+2,2]: =z;

cells [ntetr+2,3]: =k1+kz+1; kordx [ntetr+2,3]: =x+hx [i] ; kordy [ntetr+2,3]: =y+hy [j] ; kordz [ntetr+2,3]: =z;

cells [ntetr+2,4]: =k1; kordx [ntetr+2,4]: =x+hx [i] ; kordy [ntetr+2,4]: =y; kordz [ntetr+2,4]: =z-hz [k] ;

cells [ntetr+3,1]: =k2; kordx [ntetr+3,1]: =x; kordy [ntetr+3,1]: =y+hy [j] ; kordz [ntetr+3,1]: =z;

cells [ntetr+3,2]: =k1+kz+1; kordx [ntetr+3,2]: =x+hx [i] ; kordy [ntetr+3,2]: =y+hy [j] ; kordz [ntetr+3,2]: =z;

cells [ntetr+3,3]: =k1+kz; kordx [ntetr+3,3]: =x+hx [i] ; kordy [ntetr+3,3]: =y+hy [j] ; kordz [ntetr+3,3]: =z-hz [k] ;

cells [ntetr+3,4]: =k1; kordx [ntetr+3,4]: =x+hx [i] ; kordy [ntetr+3,4]: =y; kordz [ntetr+3,4]: =z-hz [k] ;

cells [ntetr+4,1]: =k2; kordx [ntetr+4,1]: =x; kordy [ntetr+4,1]: =y+hy [j] ; kordz [ntetr+4,1]: =z;

cells [ntetr+4,2]: =k1+kz; kordx [ntetr+4,2]: =x+hx [i] ; kordy [ntetr+4,2]: =y+hy [j] ; kordz [ntetr+4,2]: =z-hz [k] ;

cells [ntetr+4,3]: =point+kz; kordx [ntetr+4,3]: =x; kordy [ntetr+4,3]: =y+hy [j] ; kordz [ntetr+4,3]: =z-hz [k] ;

cells [ntetr+4,4]: =k1; kordx [ntetr+4,4]: =x+hx [i] ; kordy [ntetr+4,4]: =y; kordz [ntetr+4,4]: =z-hz [k] ;

cells [ntetr+5,1]: =k2; kordx [ntetr+5,1]: =x; kordy [ntetr+5,1]: =y+hy [j] ; kordz [ntetr+5,1]: =z;

cells [ntetr+5,2]: =point+kz; kordx [ntetr+5,2]: =x; kordy [ntetr+5,2]: =y+hy [j] ; kordz [ntetr+5,2]: =z-hz [k] ;

cells [ntetr+5,3]: =point; kordx [ntetr+5,3]: =x; kordy [ntetr+5,3]: =y; kordz [ntetr+5,3]: =z-hz [k] ;

cells [ntetr+5,4]: =k1; kordx [ntetr+5,4]: =x+hx [i] ; kordy [ntetr+5,4]: =y; kordz [ntetr+5,4]: =z-hz [k] ;

V [k+ (j-1) * (kz-1) + (i-1) * (kz-1) * (ky-1)]: = (hz [k] *hy [j] *hx [i]) /6;

inc (point);

inc (ntetr,6);

end;

inc (point);

y: =y+hy [j] ;

end;

inc (point,kz);

x: =x+hx [i] ;

end;

алгоритм построения матрицы жесткости и ее компрессии

begin

n: =kx*ky*kz*3;

m: = (ky*kz+1) *3;

for k: =1 to koltetr do

for i: =1 to 4 do

for j: =1 to 4 do

if (cells [k, i] <=cells [k,j]) then formprmatr (cells [k, i],cells [k,j],k);

Count: =0;

for i: =1 to 3*kx*ky*kz do if P [i] =1 then compressf (i-Count);

dec (n,count);

end;

алгоритм решения системы уравнений

begin

s [1,1]: =sqrt (abs (value2 (1,1))); d [1]: =sign (value2 (1,1));

for j: =2 to n do s [1,j]: =value2 (1,j) / (d [1] *s [1,1]);

for i: =2 to n do

begin

for j: =2 to n do

begin

if i>j then s [i,j]: =0;

sum: =0;

for k: =1 to i-1 do sum: =sum+s [k, i] *s [k, i] *d [k] ;

d [i]: =sign (value2 (i, i) - sum);

if i

begin

sum: =0;

for k: =1 to i-1 do sum: =sum+s [k, i] *s [k,j] *d [k] ;

s [i,j]: = (value2 (i,j) - sum) / (s [i, i] *d [i]);

end;

sum: =0;

for k: =1 to j-1 do sum: =sum+d [k] *s [k,j] *s [k,j] ;

s [j,j]: =sqrt (abs (value2 (j,j) - sum));

end;

end;

y [1]: =F [1] / (s [1,1] *d [1]);

for k: =2 to n do

begin

sum: =0;

for i: =1 to k-1 do sum: =sum+s [i,k] *y [i] *d [i] ;

y [k]: = (F [k] -sum) / (s [k,k] *d [k]);

end;

x [n]: =y [n] /s [n,n] ;

for k: =n-1 downto 1 do

begin

sum: =0;

for i: =k+1 to n do sum: =sum+s [k, i] *x [i] ;

x [k]: = (y [k] -sum) /s [k,k] ;

end;

end;

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5121
Авторов
на СтудИзбе
443
Средний доход
с одного платного файла
Обучение Подробнее