49577 (Гео-информационные системы и эпидемии гриппа), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Гео-информационные системы и эпидемии гриппа", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "49577"

Текст 2 страницы из документа "49577"

P - население территории;

S - восприимчивые;

E - в инкубации;

I - инфекционные больные;

R - переболевшие гриппом;

F - умершие от осложнений,

МП - воздушно-капельный механизм передачи инфекции.

В ходе изучения эпидемий гриппа XX века была выявлена зависимость уровня заболеваемости населения гриппом от его численности. Наибольшая эпидемическая заболеваемость отмечается в городах с населением в 1 млн. человек и больше, что составляет 11.3% всех случаев гриппа на территории страны. В городах с населением от 500 тысяч до 1 млн. человек эта цифра составляет 10.9%, а с населением меньше 500 тысяч - уже 9.7%.

Математическая модель эпидемии гриппа. Модель отражает динамику развития эпидемии среди населения города при непрерывном заражении лиц за счет воздушно-капельного механизма. Соотношения этой модели представляют систему нелинейных интегро-дифференциальных уравнений в частных производных с соответствующими начальными и граничными условиями.

1. Число восприимчивых лиц X(t) среди населения города:

с начальным условием: X(t0) =(1-α) P(t0).

2. Число лиц в инкубационном периоде гриппа:

с начальным условием:

где:

предыстория эпидемии на ее начало.

3. Число новых случаев заболевания гриппом:

4. Число лиц с различными клиническими формами гриппа:

с начальным условием:

где:

предыстория эпидемии на ее начало.

5. Число невосприимчивых лиц или лиц, переболевших гриппом Zr(t):

с начальным условием: Zr(t0) =Zr0=P(t0).

6. Число лиц, погибших от осложнений Zf(t):

с начальным условием: Zf(t0) =0.

7. Граничные условия эпидемии (процесс заражения):

Далее приводятся результаты расчетов по компьютерной модели эпидемии гриппа 1-7, которая отражает развитие эпидемической ситуации в гипотетическом городе с населением в 1 млн. человек при числе восприимчивых порядка 60% (600 тысяч человек) и с летальностью около 1% от числа больных гриппом. Из графиков на рисунке 3 следует, что эпидемия гриппа в этом городе продлится около 2.5 месяцев, при этом гриппом переболеет 534 тысяч человек. Пик эпидемии придется на 43 день и составит 36 тысяч человек. От гриппа в городе может погибнуть до 5.4 тысяч человек.

3. Гипотетическая эпидемия птичьего гриппа (ПГ)

К ПГ восприимчивы домашние и дикие птицы многих видов. При этом значительные скопления птиц на птицефабриках или высокая популяционная плотность в близко расположенных хозяйствах создают "благоприятные" условия для развития эпизоотического процесса и в связи с этим особенно уязвимы, здесь часто возникают эпизоотии или вспышки высокопатогенного гриппа. С 2003 года в мире отмечено несколько эпизоотических вспышек болезни, при этом от птиц заражались и люди ПГ (см. предыдущую статью В.В. Макарова и др. в настоящем выпуске). Особенно тревожным является появление и распространение высокопатогенного субтипа вируса ПГ H5N1. Именно этот вирус вызывает наибольшую тревогу как потенциальный возбудитель эпидемии гриппа у людей, если у него сформируется механизм передачи инфекционного агента от человека к человеку.

Рисунок 3. Графики развития эпидемии гриппа в крупном городе [характеристики взяты из (1)].

Первые случаи гриппа среди людей, вызванного вирусом ПГ субтипа H5N1, произошли в Гонконге в 1997 году. В той вспышке пострадало 18 человек, все были госпитализированы, при этом 6 из них умерли. Источник инфекции во всех случаях был прослежен специалистами. Установлено, что эти люди имели контакт с больными птицами на фермах (1 случай) и рынках (17 случаев). Ограниченная передача патогенного вируса гриппа типа H5N1 от человека к человеку была зарегистрирована среди сотрудников органов здравоохранения, сельскохозяйственных рабочих на птицефермах и членов их семей. В этой связи представляет интерес вычислительный эксперимент с математической моделью эпидемии гриппа 1-7, в которую нами были "подставлены" условные характеристики вируса типа H5N1 (инкубационный период оценивается от 2 до 5 дней, инфекционный период от 10 до 15 дней, летальность - 30%).

На рисунке 4 приводятся результаты такого эксперимента, которые отражают развитие эпидемической ситуации в городе при числе восприимчивых к ПГ ~ 60% его населения и высокой летальности в 30%. Из графиков следует, что эпидемия гриппа в городе продлится около 2.5 месяцев, при этом переболеет вся восприимчивая часть населения - 600 тысяч человек. Пик эпидемии ПГ придется на 43 день с момента появления патогена, и он составит 53.9 тысяч человек в день. От птичьего гриппа в городе может погибнуть около 180 тысяч человек!

Рисунок 4. Графики развития эпидемии птичьего гриппа в крупном городе (характеристики патогена условны - тип H5N1).

Наибольший интерес для эпидемиологов представляют вычислительные эксперименты с математической моделью процессов распространения гриппа на территории крупных городов страны, связанных между собой транспортной сетью (гражданская авиация).

Модель эпидемии гриппа на территории страны. Эта модель отражает процесс одновременного распространения гриппа среди населения нескольких городов страны (см. рисунок 5). За счет непрерывного движения источников инфекции (лиц в инкубационном периоде) возможны новые случаи заражения лиц из группы риска X(t) в каждом городе. Очевидно, что в каждом случае сформируется своя "локальная" эпидемия, которая будет "подпитывать" другие города за счет постоянной миграции населения между ними.

Движение гриппозной инфекции по системе "n" городов страны, как правило, начинается с некоторого исходного пункта, куда она ранее была занесена извне (очаг инфекции на сопредельной территории). Предполагается, что именно в этом городе появились первые инкубационно больные лица и инфекционные больные, которые затем вызвали "локальную" эпидемию (см. рисунок 3). Вместе с тем, за счет миграции населения по системе городов страны эта "локальная" эпидемия дает движение патогена в другие города, где формируются свои "локальные" эпидемии.

Рисунок 5. Схема развития эпидемии гриппа в системе "n" городов.

С учетом вышеизложенного, математическая модель крупномасштабной эпидемии гриппа в системе из "n" городов имеет вид суперсистемы нелинейных интегро-дифференциальных уравнений 1-7 с соответствующими начальными и граничными условиями, которые записываются для каждого "i"-го города (i=1, 2, 3, …, n).

Суперсистема уравнений крупномасштабной эпидемии гриппа в системе из "n" городов страны была реализована в виде компьютерной программы "GRIPP. EXE" (см. рисунок 6), с помощью которой были проведены вычислительные эксперименты с соответствующими начальными и граничными условиями эпидемии обычного гриппа [данные по расчетам (1,3)].

Начало расчетов обеспечивается вызовом файла миграции населения по 16-ти крупным городам России (см. рисунок 7). Файл миграционных потоков населения (ежедневные перемещения) по 16-ти крупным городам России был построен на основании статистических данных полетов самолетов из Москвы в 15 крупных городов по Расписанию на середину лета 2003 года.

Для практического использования компьютерной программы "GRIPP" исследователю потребуется персональный компьютер, совместимый с ПК типа IВМ, который имеет стандартную конфигурацию системного блока с установленной на нем OC типа WINDOWS.

На рисунке 8 приводятся результаты такого эксперимента. Графики отражают процесс новых случаев гриппа в городах России со сценарием первичного появления патогена в Санкт-Петербурге с последующим его движением в Москву и далее по 14 крупным городам России. Очевидно, что такую эпидемию целесообразно отобразить на карте России и с ее помощью решить задачи противодействия эпидемии путем карантинных мер в аэропортах страны (снятие пассажиров с симптомами гриппа).

Рисунок 6. Программа для прогнозирования эпидемии гриппа в 16-ти городах России.

Рисунок 7. Общий вид файла миграции населения по 16-ти городам России.

Рисунок 8. Результаты прогнозирования эпидемии гриппа в 16-ти городах России.


Заключение

Современные ГИС сегодня становятся все более важными инструментами для проведения прогнозно-аналитических исследований в эпидемиологии и эпизоотологии. Они позволяют существенно сократить время и снизить трудоемкость исследований, получить требуемые результаты по ходу развития эпидемий или эпизоотий. Это чрезвычайно важно для организации мер эффективного противодействия патогенам, т.к обеспечивает не только объективность эпидемического анализа ранее сложившихся ситуаций, но и позволяет перейти к поиску и формированию рациональных стратегий противодействия как "старым", так и новым типам патогенов. Несмотря на то, что ГИС последовательно развивались в течение последних нескольких десятилетий, только сегодня они стали доступными для ученых и специалистов. Современные ГИС предлагают расширяющиеся функциональные возможности для решения прикладных задач эпидемиологии и эпизоотологии при относительно невысокой их стоимости. При проведении эпидемиологического анализа процессов распространения инфекционных заболеваний с помощью инструментов ГИС специалистам уже есть из чего выбрать, особенно в части визуализации результатов исследований на географических картах. В этом случае целесообразно к ГИС добавить математическое и компьютерное моделирование эпидемий или эпизоотий, что открывает новые возможности в организации эффективных мер противодействия эмерджентным инфекциям, особенно таким, как атипичная пневмония (см. ниже статью Б.В. Боева в настоящем выпуске), птичий грипп, оспа, сибирская язва, геморрагические лихорадки.


Литература

  1. Бароян О.В., Рвачев Л.А., Иванников Ю.Г. Моделирование и прогнозирование эпидемий гриппа для территории СССР.М., ИЭМ, 1977.

  2. Супотницкий М.В. Микроорганизмы, токсины и эпидемии. М., "Вузовская книга", 2000.

  3. Rvachev L. A., and I. Longini. Mathematical Biosciences, 1985, 75, 3-22.

  4. Alderson M. Geographical Epidemiology. In: Smith A. (ed). "Rec. Adv. Com. Med. ", Ch. Liv., Edinburgh, 1985, 3, 93-115.

  5. Cross A. Using a geographical information system to explore the spatial incidence of childhood cancer in Northern England. In Harts J. et al. (eds)"Proc.1-st Eur. Conf. Geogr. Inf. Syst. ", Amsterdam, EGIS Found., Netherlands, 1990, 218-229.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Нет! Мы не выполняем работы на заказ, однако Вы можете попросить что-то выложить в наших социальных сетях.
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
4100
Авторов
на СтудИзбе
670
Средний доход
с одного платного файла
Обучение Подробнее