49560 (Генерация матриц)

2016-07-30СтудИзба

Описание файла

Документ из архива "Генерация матриц", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "49560"

Текст из документа "49560"

Курсовая работа

"Генерация матриц"

Введение

В настоящее время матричное исчисление широко применяется в различных областях математики, механики, теоретической физики, теоретической электротехники и т.д.

Целью курсовой работы является разработка алгоритма и написание на его основе программы, которая генерирует квадратную матрицу по ее введенному определителю, размерности и диапазона элементов матрицы.

Данная курсовая работа состоит двух глав, включающих в себя каждая несколько параграфов и подпунктов.

В первой главе приведена теоретическая часть по генерации матриц, включающая основные понятия и определения теории матриц, основные теоремы теории матриц, дающие научную основу для разработки алгоритма генерации матриц и написании на его основе программы. Здесь вводятся основные операции над матрицами и детально изучаются свойства определителей, являющихся основой числовой характеристикой квадратных матриц.

Во второй главе рассказывается об основных проблемах, с которыми столкнулся при составлении алгоритма и написании программы, приводится алгоритм генерации матриц, описываются некоторые важные части программы, основывающейся на алгоритме, и приводится листинг программного продукта.

В заключении говорится о проблемах, с которыми столкнулся при составлении алгоритма и написании на его основе программы, и о путях усовершенствования предложенного алгоритма и программы.

1. Матрицы и определители


1.1 Матрицы. Действия с матрицами

Все определения, теоремы, свойства, следствия и их доказательства, используемые в курсовой работе, взяты из книги В.А. Ильина, Э.Г. Позняка «Линейная алгебра».

Матрицей называется прямоугольная таблица из чисел, содержащая некоторое количество m строк и некоторое количество n столбцов (размера ).

Числа m и n называются порядками матрицы. Если m=n, матрица называется квадратной, а число m=n – её порядком.

Для записи матрицы применяются либо сдвоенные черточки, либо круглые или квадратные скобки:

Для краткого обозначения матрицы часто используется либо одна большая латинская буква (например, A), либо символ , либо .

Числа , входящие в состав данной матрицы, называются её элементами. В записи первый индекс означает номер строки, а второй индекс – номер столбца.

В случае квадратной матрицы

(1.1)

вводится понятия главной и побочной диагоналей. Главной диагональю матрицы называется диагональ a11 a 22an n, идущая из левого верхнего угла этой матрицы в правый нижний её угол. Побочной диагональю матрицы называется диагональ an1 a(n-1)2a1n, идущая из левого нижнего угла в правый верхний угол.

Прежде всего, будем считать две матрицы равными, если эти матрицы имеют одинаковые порядки и все их соответствующие элементы совпадают.

Перейдём к определению основных операций над матрицами.

Сложение матриц. Суммой двух матриц и одних и тех же порядков m и n называется матрица тех же порядков m и n, элементы ci j которой равны

(1.2)

Для обозначения суммы двух матриц используется запись C=A+B. Операция составления суммы матриц называется их сложением.

Итак, по определению

=

=

Из определения суммы матриц, а точнее из формулы (1.2) непосредственно вытекает, что и операция сложения матриц обладает теми же свойствами, что и операция сложения вещественных чисел, а именно:

  1. переместительным свойством: A+B=B+A,

  2. сочетательным свойством: (A+B)+C=A+(B+C).

Эти свойства позволяют не заботиться о порядке следования слагаемых матриц при сложении двух или большего числа матриц.

Умножение матрицы на число. Произведением матрицы на вещественное число λ называется матрица , элементы ci j которой равны

(1.3)

Для обозначения произведения матрицы на число используется запись C=λA или C=Aλ. Операция составления произведения матрицы на число называется умножением матрицы на это число.

Из формулы (1.3) видно, что умножение матрицы на число обладает следующими свойствами:

  1. сочетательным свойством относительно числового множителя: (λμ) A = λ(μA);

  2. распределительным свойством относительно суммы матриц: λ (A+B) = λA + λB;

  3. распределительным свойством относительно суммы чисел: (λ+μ) A = λA + μA.

Замечание. Разностью двух матриц A и B одинаковых порядков m и n естественно назвать такую матрицу C тех же порядков m и n, которая в сумме с матрицей B даёт матрицу A. Для обозначения разности двух матриц используется естественная запись: C = A – B.

Очень легко убедиться, что разность C двух матриц A и B может быть получена по правилу C = A + (– 1) B.

Перемножение матриц. Произведением матрицы , имеющей порядки, соответственно равные m и n, на матрицу , имеющую порядки, соответственно равные m и p, называется матрица , имеющая порядки, соответственно равные т и р, и элементы ci j, определяемые формулой

. (1.4)

Для обозначения произведения матрицы A на матрицу B используют запись . Операция составления произведения матрицы A на матрицу B называется перемножением этих матриц.

Из сформулированного выше определения вытекает, что матрицу А можно умножить не на всякую матрицу B: необходимо, чтобы число столбцов матрицы A было равно числу строк матрицы B.

В частности, оба произведения и можно определить лишь в том случае, когда число столбцов A совпадает с числом строк B, а число строк A совпадает с числом столбцов B. При этом обе матрицы и будут квадратными, но порядки их будут различными. Для того чтобы оба произведения и не только были определены, но и имели одинаковый порядок, необходимо и достаточно, чтобы обе матрицы A и B были квадратными матрицами одного и того же порядка.

Формула (1.4) представляет собой правило составления элементов матрицы C, являющейся произведением матрицы A на матрицу B. Это правило можно сформулировать и словесно: элемент cij стоящий на пересечении i‑й строки и j‑го столбца матрицы C = , равен сумме попарных произведений соответствующих элементов i‑й строки матрицы A и j‑го столбца матрицы B.

В качестве примера применения указанного правила приведем формулу перемножения квадратных матриц второго порядка

.

Из формулы (1.4) вытекают следующие свойства произведения матрицы A на матрицу B:

1) сочетательное свойство: (AB) C = A(BC);

2) распределительное относительно суммы матриц свойство: (A+B) C=AC+BC или A (B+C)=AB+AC.

Распределительное свойство сразу вытекает из формул (1.4) и (1.2), а для доказательства сочетательного свойства достаточно заметить, что если , , , то элемент матрицы (AB) C в силу (1.4) равен , а элемент матрицы A(BC) равен , но тогда равенство = вытекает из возможности изменения порядка суммирования относительно j и k.

Вопрос о перестановочном свойстве произведения матрицы A на матрицу B имеет смысл ставить лишь для квадратных матриц A и B одинакового порядка (ибо, как указывалось выше, только для таких матриц A и B оба произведения AB и BA определены и являются матрицами одинаковых порядков). Элементарные примеры показывают, что произведение двух квадратных матриц одинакового порядка не обладает перестановочным свойством. В самом деле, если положить , , то , а .

Здесь видны важные частные случаи, в которых справедливо перестановочное свойство. Две матрицы, для произведения которых справедливо перестановочное свойство, называются коммутирующими.

Среди квадратных матриц выделим класс так называемых диагональных матриц, у каждой из которых элементы, расположенные вне главной диагонали, равны нулю. Каждая диагональная матрица порядка n имеет вид

,

где – какие угодно числа. Если все эти числа равны между собой, т.е. , то для любой квадратной матрицы A порядка n справедливо равенство AD=DA. Проверим это, обозначим символами и элементы, стоящие на пересечении i‑й строки и j‑го столбца матриц AD и DA соответственно. Тогда из равенства (1.4) и из вида матрицы D получим, что

, , (1.6)

т.е. = .

Среди всех диагональных матриц (1.5) с совпадающими элементами особо важную роль играют две матрицы. Первая из этих матриц получается при d=l, называется единичной матрицей n‑го порядка и обозначается символом E. Вторая матрица получается при d=0, называется нулевой матрицей n‑го порядка и обозначается символом O. Таким образом,

, .

В силу доказанного выше AE = EA и AO = OA. Более того, из формул (1.6) видно, что

AE = EA = A, AO = OA = O. (1.7)

Первая из формул (1.7) характеризует особую роль единичной матрицы E, аналогичную той роли, которую играет число 1 при перемножении вещественных чисел. Что же касается особой роли нулевой матрицы O, то ее выявляет не только вторая из формул (1.7), но и элементарно проверяемое равенство

A + O = O + A = A.

Нулевой матрицей называют любую матрицу, все элементы которой равны нулю.

Блочные матрицы. Пусть некоторая матрица при помощи горизонтальных и вертикальных прямых разбита на отдельные прямоугольные клетки, каждая из которых представляет собой матрицу меньших размеров и называется блоком исходной матрицы. Тогда возникает возможность рассмотрения исходной матрицы A как некоторой новой (так называемой блочной) матрицы , элементами которой служат указанные блоки. Указанные элементы обозначаются большой латинской буквой, чтобы подчеркнуть, что они являются матрицами, а не числами и (как обычные числовые элементы) снабжены двумя индексами, первый из которых указывает номер «блочной» строки, а второй – номер «блочного» столбца.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5138
Авторов
на СтудИзбе
442
Средний доход
с одного платного файла
Обучение Подробнее