49476 (Экспертные системы как прикладная область искусственного интеллекта), страница 3

2016-07-30СтудИзба

Описание файла

Документ из архива "Экспертные системы как прикладная область искусственного интеллекта", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "49476"

Текст 3 страницы из документа "49476"

Большинство экспертных систем включают знания, по содержанию которых их можно отнести одновременно к нескольким типам. Например, обучающая система может также обладать знаниями, позволяющими выполнять диагностику и планирование. Она определяет способности обучаемого по основным направлениям курса, а затем с учетом полученных данных составляет учебный план. Управляющая система может применяться для целей контроля, диагностики, прогнозирования и планирования.

2. Структура, этапы разработки экспертных систем

2.1.Основные компоненты экспертных систем

Типичная экспертная система состоит из следующих основных компонентов: решателя (интерпретатора), рабочей памяти (РП), называемой также базой данных (БД), базы знаний (БЗ), компонентов приобретения знаний, объяснительного и диалогового компонентов (рисунок 1).


Инженер + Эксперт по знаниям Пользователь

Рис. 1. Структура экспертной системы.

База данных предназначена для хранения исходных и промежуточных данных решаемой в текущий момент задачи. Этот термин совпадает по названию, но не по смыслу с термином, используемым в информационно-поисковых системах (ИПС) и системах управления базами данных (СУБД) для обозначения всех данных (и в первую очередь не текущих, а долгосрочных), хранимых в системе.

База знаний в экспертной системе предназначена для хранения долгосрочных данных, описывающих рассматриваемую область (а не текущих данных), и правил, описывающих целесообразные преобразования данных этой области.

Решатель, используя исходные данные из РП и знания из БЗ, формирует такую последовательность правил, которые, будучи применёнными к исходным данным, приводят к решению задачи.

Объяснительный компонент объясняет, как система получила решение задачи (или почему она не получила решения) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату.

Диалоговый компонент ориентирован на организацию дружелюбного общения со всеми категориями пользователей как в ходе решения задач, так и приобретения знаний, объяснения результатов работы.

В разработке экспертной системы участвуют представители следующих специальностей:

эксперт в той проблемной области, задачи которой будет решать экспертная система;

инженер по знаниям - специалист по разработке экспертных систем;

программист - специалист по разработке инструментальных средств (ИС).

Необходимо отметить, что отсутствие среди участников разработки инженера по знаниям (то есть его замена программистом) либо приводит к неудаче процесс создания экспертной системы, либо значительно удлиняет его. Эксперт определяет знания (данные и правила), характеризующие проблемную область, обеспечивает полноту и правильность введения в экспертную систему знаний.

Инженер по знаниям помогает эксперту выявить и структурировать знания, необходимые для работы экспертной системы, осуществляет выбор того ИС, которое наиболее подходит для данной проблемной области, и определяет способ того представления знаний в этом ИС, выделяет и программирует (традиционными средствами) стандартные функции (типичные для данной проблемной области), которые будут использоваться в правилах, вводимых экспертом.

Программист разрабатывает ИС, содержащее в пределе все основные компоненты экспертной системы, осуществляет сопряжение ИС с той средой, в которой оно будет использовано.

Экспертная система работает в двух режимах: приобретения знаний и решения задач (называемом также режимом консультации или режимом использования экспертной системы).

В режиме приобретения знаний общение с экспертной системой осуществляется через посредничество инженера по знаниям. Эксперт описывает проблемную область в виде совокупности данных и правил. Данные определяют объекты, их характеристики и значения, существующие в области экспертизы. Правила определяют способы манипулирования данными, характерные для рассматриваемой проблемной области. Эксперт, используя компонент приобретения знаний, наполняет систему знаниями, которые позволяют экспертной системе в режиме решения самостоятельно (без эксперта) решать задачи из проблемной области.

Важную роль в режиме приобретения знаний играет объяснительный компонент. Именно благодаря ему эксперт на этапе тестирования локализует причины неудачной работы экспертной системы, что позволяет эксперту целенаправленно модифицировать старые или вводить новые знания. Обычно объяснительный компонент сообщает следующее: как правильно используют информацию пользователя; почему искались или не использовались данные или правила; какие были сделаны выводы и так далее. Все объяснения делаются, как правило, на ограниченном естественном языке или языке графики.

Режиму приобретения знаний при традиционном подходе к разработке программ соответствуют этапы алгоритмизации, программирования и отладки, выполняемые программистом. В отличие от традиционного подхода разработку программ осуществляет эксперт (с помощью экспертной системы), не владеющий программированием, а не программист.

В режиме консультации общение с экспертной системой осуществляет конечный пользователь, которого интересует результат и (или) способ получения решения. Пользователь в зависимости от назначения экспертной системы может не быть специалистом в данной проблемной области, в этом случае он обращается к экспертной системе за советом, не умея получить ответ сам, или быть специалистом, в этом случае он обращается к экспертной системе, чтобы либо ускорить процесс получения результата, либо возложить на экспертную систему рутинную работу. Термин «пользователь» означает, что им является и эксперт, и инженер по знаниям, и программист. Поэтому, когда хотят подчеркнуть, что речь идёт о том, для кого делалась экспертная система, используют термин «конечный пользователь».

В режиме консультации данные о задаче пользователя обрабатываются диалоговым компонентом, который выполняет следующие действия:

распределяет роли участников (пользователя и экспертной системы) и организует их взаимодействие в процессе кооперативного решения задачи;

преобразует данные пользователя о задаче, представленные на привычном для пользователя языке, на внутренний язык системы;

преобразует сообщения системы, представленные на внутреннем языке, в сообщения на языке, привычном для пользователя (обычно это ограниченный естественный язык или язык графики).

После обработки данные поступают в РП. На основе входных данных в РП, общих данных о проблемной области и правил из БЗ решатель (интерпретатор) формирует решение задачи.

В отличие от традиционных программ экспертная система в режиме решения задачи не только исполняет предписанную последовательность, но и предварительно формирует её. Если ответ экспертной системы не понятен пользователю, то он может потребовать объяснения, как ответ получен.

2.2. Классификация инструментальных средств экспертных систем

В широком толковании в инструментарий включают и аппаратуру, ориентированную на разработку экспертных систем (аппаратурный инструментарий).

На проектирование и создание одной экспертной системы раньше требовалось 20-30 чел.-лет. В настоящее время имеется ряд средств, ускоряющих создание экспертных систем. Эти средства называются инструментальными (ИС), или инструментарием. Использование ИС сокращает время разработки экспертных систем в 3 - 5 раз.

Экспертные системы выполняются на ЭВМ следующих типов: общего назначения; ПЭВМ; интеллектуальные рабочие станции (то есть рабочие станции типа San, Арроlо и др., снабжённые эффективными ИС для создания экспертной системы); последовательные символьные ЭВМ типа ЛИСП - машин (Symbolik-3670, А1рhа, Ехр1огег, Хегох 1100 и дугие) и ПРОЛОГ - машин; параллельные символьные ЭВМ (Connection, Dado, Faun, Hyper Cube и другие).

Программные ИС определяются следующей совокупностью характеристик: назначение; стадия существования; тип ИС; тип используемых методов и знаний; универсальность; основные свойства; среда функционирования.

Назначение определяет, для работы в каких проблемных областях и для создания какой стадии экспертной системы предназначено ИС.

По степени отработанности ИС обычно выделяют три стадии существования: экспериментальная, исследовательская, коммерческая. Экспериментальные ИС создаются для решения узких специфических задач и редко проверяются на других задачах, обычно они работают медленно и неэффективно. Следующей стадией является исследовательская. Средства, достигшие этой стадии, обычно тщательно проверены, имеют документацию и поддерживаются разработчиком, однако они ещё могут действовать медленно и неэффективно. Исследовательские ИС используются при разработке прототипов экспертных систем. Высшей стадией существования ИС является коммерческая. Этой стадии достигают те ИС, которые всесторонне и тщательно проверены, хорошо документированы, сопровождаются разработчиком, являются быстрыми и обладают удобным интерфейсом с пользователем.

По типу ИС классифицируются следующим образом:

  • символьные языки программирования, ориентированные на создание экспертных систем и систем искусственного интеллекта (например, LISP, INTRLISP, SMALLTALK);

  • языки инженерии знаний, т.е. языки высокого уровня, ориентированные на построение экспертных систем (например, ОРS-5, LOOPS, КЕS, ПРОЛОГ);

  • системы, автоматизирующие разработку (проектирование) экспертных систем, (например, КЕЕ, АRТ, ТЕIRЕSIAS, АGЕ, ТIММ), их часто называют окружение (еnvironment) для разработки систем ИИ, ориентированных на знания;

  • оболочки экспертных систем (или пустые экспертные) – экспертные системы, не содержащие знаний ни о какой проблемной области (например, ЭКСПЕРТИЗА, ЕМYСIN,ЭКО, ЭКСПЕРТ).

В приведённой классификации ИС перечислены в порядке убывания трудозатрат, необходимых на создание с их помощью конкретной экспертной системы. Действительно, при использовании ИС первого типа в задачу разработчика входит программирование всех компонентов экспертной системы на языке довольно низкого уровня. Использование ИС второго типа позволяет значительно повысить уровень языка, что, как правило, приводит к некоторому снижению эффективности. Инструментальные средства третьего типа позволяют разработчику не программировать все или часть компонентов экспертной системы, а выбирать их из заранее составленного набора. При применении ИС четвертого типа разработчик ИС полностью освобождается от работ по созданию программ, так как берет готовую пустую экспертную систему.

При использовании ИС третьего и особенно четвертого типа могут возникнуть следующие проблемы: управляющие стратегии, вложенные в процедуры вывода ИС, могут не соответствовать методам решения, которые использует эксперт, взаимодействующий с данной экспертной системой, что может приводить к неэффективным, а возможно, и к неправильным решениям; язык представления знаний, принятый в ИС, может не подходить для данного приложения.

Развитие систем, автоматизирующих разработку экспертных систем, приводит к появлению ИС, которые можно назвать настраиваемыми оболочками. Эти ИС позволяют разработчику использовать оболочку не как нечто неизменное, а генерировать оболочку из множества механизмов, имеющихся в ИС. Типичными таймерами таких ИС являются КЕЕ, АRТ, ЭКСПЕРТИЗА, ГЛОБ.

Инструментальные средства можно классифицировать и по классам экспертных систем на: ИС для создания простых экспертных систем, ИС для создания сложных экспертных систем. В настоящее время, как правило, ИС первого типа разрабатываются на ПЭВМ, а второго - на символьных ЭВМ, ЭВМ общего назначения и интеллектуальных рабочих станциях.

По типу используемых методов и знаний ИС делятся, так же как и экспертные системы, на традиционные, использующие только методы и способы представления инженерии знаний, и гибридные, сочетающие подходы инженерии знаний с подходами, развитыми в традиционном программировании при представлении данных и использовании подпрограмм.

Универсальность задаётся совокупностью двух параметров: универсальностью представления знаний и универсальностью функционирования. Универсальность представления характеризует способ; (модель) представления знаний в ИС и принимает следующие значения: единое представление - ИС использует одну модель; интегральное представление - ИС допускает интегральное использование нескольких моделей; универсальное - ИС допускает интегральное использование всех основных моделей представления. К основным моделям представления относятся: правила (продукции); фреймы или семантические сети; логические модели (исчисление предикатов). Примерами ИС, в которых используется единое представление, является ПРОЛОГ, интегральное представление - СENTAUR, а универсальное - КЕЕ, АRТ.

Универсальность функционирования характеризует механизмы (парадигмы), определяющие, как в ИС задается поведение (функционирование) системы, и принимает следующие значения: единый механизм функционирования - ИС использует один механизм функционирования; интегральное функционирование - ИС допускает интегральное использование нескольких механизмов функционирования; универсальное функционирование - ИС допускает интегральное использование всех основных механизмов. К основным механизмам (парадигмам программирования) относятся: процедурное программирование; обратное программирование; программирование, ориентированное на данные; программирование, ориентированное на правила.

Процедурное программирование наиболее широко распространено среди существующих сегодня языков программирования (например, Си). Здесь явно выделяют два вида различных сущностей: процедуры, являющиеся тем, что задает поведение (функционирование) программы и выполняющие активную роль; данные, являющиеся тем, что обрабатывается способом, предписанным процедурами, и выполняющие пассивную роль. Способность составлять процедуры из команд (операторов) и вызывать их - ключ функционирования, использующего данную парадигму. Особенностью её являются боковые эффекты, возникающие в тех случаях, когда различные процедуры, использующие общие данные, независимо их изменяют.

Парадигма объектного программирования в отличие от процедурной не разделяет программу на процедуры и данные. Здесь программа организуется вокруг сущностей (объектов), которые включают локальные процедуры (методы) и локальные данные (переменные). Поведение (функционирование) в этой парадигме организуется путем пересылки сообщений между объектами. Объект, получив сообщение, осуществляет его локальную интерпретацию, основываясь на локальных процедурах и данных. Объектная парадигма удобна в тех приложениях, где взаимодействие сущностей сведено к унифицированным протоколам. Важным свойством языков, использующих данную парадигму, является сеть наследований, которая существенно упрощает определение новых объектов, почти подобных известным.

В обеих рассмотренных парадигмах активная роль в организации поведения отводится процедурам, а не данным. Причём процедура активизируется либо её вызовом, либо посылкой ей сообщения. Подобные способы задания поведения удобны для описания детерминированной последовательности действий либо одного процесса, либо нескольких, но строго взаимосвязанных процессов.

В программировании, ориентированном на данные, активную роль играют данные, а не процедуры. Здесь со структурами активных данных связывают некоторые процедуры (действия), которые активизируются тогда, когда осуществляется доступ к этим данным. Описанный механизм в некотором смысле обратный механизму посылки сообщений. Действительно, сообщение является явным способом указать объекту, какие действия следует выполнять (эти действия в качестве бокового эффекта могут изменить значения некоторых данных (племенных), а отнесение данных к активным является явным способом указания на контроль за доступом к ним, при этом в качестве бокового эффекта может быть послано сообщение процедуре. Программирование, ориентированное на данные, позволяет организовать поведение малозависимых процессов, что трудно реализовать в процедурной и объектной парадигмах. Малая зависимость процессов означает, что они могут рассматриваться и программироваться отдельно. Однако, при использований парадигмы, управляемой данными, эти независимо запрограммированные процессы могут взаимодействовать между собой без их изменения, то есть без перепрограммирования.

В программировании, ориентированном на правила, поведение определяется множеством правил вида условие - действие. Условие задаёт образ данных, при возникновении которого действие правила может быть выполнено. Правила в данной парадигме играют такую же роль, как и подпрограммы в процедурной парадигме. Однако, если в процедурной парадигме поведение задаётся детерминированной последовательностью процедур, не зависящей (для широкого класса обрабатываемых данных) от значений этих данных, то в парадигме, ориентированной на правила, поведение (последовательность действий) задаётся не заранее предписанной последовательностью правил, а формируется на основе тех данных и их значений, которые в текущий момент обрабатываются программой (системой). Формирование поведения осуществляется по следующей схеме. Условия правил сопоставляются с текущими данными, и те правила, условия которых удовлетворяются значениями текущих данных, становятся претендентами на выполнение. Затем по определённому критерию осуществляется выбор одного правила среди претендентов и выполнение его (то есть выполнение действия, указанного в правой части правила). Если система (устройство) допускает параллельную обработку, то все правила-претенденты могут выполняться одновременно. Таким образом, правила выполняются в порядке, предписываемом теми образцами данных, которые, как правило, малозависимы друг от друга. Итак, подход, ориентированный на правила, удобен для описания поведения, гибко и разнообразно реагирующего на большое многообразие состояний данных. Основные свойства определяют особенности ИС с точки зрения реализации компонентов экспертных систем. Среда функционирования определяет тип ЭВМ, на которой реализовано ИС, тип операционной системы, в среде которой ИС работает, и используемый язык программирования.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Нет! Мы не выполняем работы на заказ, однако Вы можете попросить что-то выложить в наших социальных сетях.
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
4100
Авторов
на СтудИзбе
670
Средний доход
с одного платного файла
Обучение Подробнее