49383 (Формування об’ємних зображень на основі фотографій), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Формування об’ємних зображень на основі фотографій", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "49383"

Текст 2 страницы из документа "49383"

Незважаючи на те, що воксельні методи орієнтовані в першу чергу на наукову візуалізацію, багато ідей, що використовується в цих методах, знаходять своє застосування в інших областях. Наприклад, ідея решітки використається при роботі із точковими поданнями, а також з поданнями, заснованими на зображеннях.

Переваги даного алгоритму: простота регулярної структури; апаратна підтримка.

Недоліки даного алгоритму: великий обсяг даних, тому необхідно використовувати спеціальні багатомаштабні структури для роботи зі складними об'єктами; використовувані структури даних зберігають внутрішньої, невидимі, частини об’єкта, тоді як для поставленого завдання достатній опис поверхні.

2.1.4 Моделі, засновані на зображеннях

Моделювання й візуалізація, засновані на зображеннях (Image-Based Modeling and Rendering, далі IBMR) являють собою альтернативний підхід до рішення завдань синтезу зображення [4].

Такі методи не використовують проміжні структури даних, і синтезують підсумкову картинку, ґрунтуючись на вихідних даних - як правило, зображеннях або зображеннях з глибиною. Більш формально метод візуалізації, заснований на зображеннях, можна визначити як алгоритм, що визначає, як по кінцевому наборі вихідних (reference) зображень сцени одержати нове, результуюче (resulting) зображення для заданої точки спостереження й заданих параметрів віртуальної камери.

Структури даних, використовувані для такого алгоритму візуалізації, можуть сильно відрізнятися, незмінним залишається орієнтація методів на безпосередню роботу з вихідними даними, що робить методи IBMR концептуально близькими до поставленого завдання.

Зображення з картами глибини

Однієї з найпростіших структур даних, використовуваних в IBMR є набори зображень із картами глибини. Визначимо пари зображення плюс карта глибини як кольорове зображення, якій зіставлене напівтонові зображення відповідного розміру, інтенсивність у кожній точці якого відповідає відстані від камери до поверхні об’єкта.

Примітною властивістю подання є те, що сучасні дистанційні сканери дозволяють прямо одержувати дані у вигляді карт глибини, а найбільш дорогі моделі одержують і колірну інформацію про об'єкт. Отже, таке подання максимально підходить для роботи зі складними реальними даними, а завдання полягає в розробці методу візуалізації.

Варто помітити, що пари зображення плюс карта глибини однозначно визначає дискретне наближення поверхні в тривимірному просторі, при цьому якість наближення залежить від роздільної здатності зображення й обраного положення камери.

Одна карта глибини зберігає тільки видиму частину об’єкта, тому для відновлення повного об’єкта необхідно використати набір з декількох карт глибини, залежно від складності сцени (рис. 2.2).

Рис. 2.2. Створення карти глибин по пікселям

Було запропоновано досить багато методів візуалізації й використання подібних структур даних. Наприклад, Леонардо-Макмиллан використовує систему обробки зображень для деформації (warping) вихідного зображення з обліком вихідної й результуючої (поточної) камер таким чином, щоб результат, відображений на екрані, створював ілюзію тривимірності [5].

У роботі Мартіна Олів’єрі також використовується деформація зображень, однак результатом роботи алгоритму є текстури створені з карт глибини для поточного положення віртуальної камери й накладені на просту (плоску) полігональну сітку - так називані рельєфні текстури (relief textures) [6].

Однак ці методи мають серйозні недоліки. З одного боку, в умовах недостатньої точності вихідних даних й або великому відхиленні віртуальної камери від вихідної, у результуючому зображенні можлива поява дірок (holes), тобто погіршення якості візуалізації. З іншого боку, результатом роботи дистанційних сканерів часто є набори даних з 50-70 карт глибини, які в описаних вище алгоритмах будуть оброблятися сепаратно, створюючи додаткові погрішності візуалізації. Крім того, час візуалізації однієї карти глибини розміром 512x512 по методу Олів’єрі на комп'ютері із процесором Pentium III 866 і відео картою NVidia GeForce2 Pro становить близько 70 мс. Обробка 50-ти зображень займе біля 4-х секунд.

Іншим можливим варіантом є пряме відновлення тривимірних координат семплів (sample) і їхня візуалізація прямо за допомогою проекції на видову площину віртуальної камери. Такий підхід дозволяє використати апаратне прискорення тому, що пікселі вихідних зображень у просторі можуть бути представлені крапками або багатокутниками. Однак, на практиці такий метод працює тільки для досить невеликих наборів даних.

Головною перешкодою для створення багатошарових методів візуалізації карт глибини є відсутність чіткої просторової структури пари зображення плюс карта глибини.

Багатошарові зображення із глибиною

Останнім часом було почато кілька спроб використання багатомасштабних методів разом із заснованими на зображеннях поданнями. Одна з них описана в роботі Чанга й Бішопа й як базове подання використовує багатошарові зображення із глибиною (Layered Depth Images - LDI), у перше описані в статі Гортлера С. Солена М. (Візуалізація багатошарових глибин зображення

Багатошарові зображення із глибиною зберігають для кожного пікселя карти кольорів всі перетинання відповідного променя з моделлю. Одного багатошарового зображення досить для опису повного об’єкта (рис. 2.3).

Рис. 2.3. Багатошарове зображення

Відмінність багатошарових зображень із глибиною від простих полягає в тім, що одне зображення дозволяє зберігати інформацію не тільки про видиму з даної вихідної камери частини поверхні об’єкта, а повну інформацію про об'єкт. По суті, LDI – це тривимірна структура даних, що представляє собою прямокутну матрицю, кожним елементом якої є список крапок. Кожна крапка містить глибину (відстань до опорної площини) і атрибути, у найпростішому випадку – кольори. Для подання всього об’єкта можна використати єдине багатошарове зображення, що використовує шість перспективних LDI з єдиним центром проекції (3).

Така структура дозволяє проводити візуалізацію як описаними вище методами Макмілана й Олів’єрі, так і просто використати збережену інформацію як скупчення точок і відображати його прямо за допомогою одного із графічних API (наприклад, OpenGL).

З використанням LDI-подібних структур зв'язані деякі обмеження на візуалізацію, обумовлені тим, що всі крапки в зображенні орієнтовані на одну базову площину. Крім того, LDI не можуть бути прямо отримані із пристроїв введення й для створення такої структури необхідне використання додаткових алгоритмів, наприклад, деформуючи зображення із глибиною по методу Макмілана таким чином, щоб площина результуючого зображення збігалася з базовою площиною LDI. Відзначимо, що процес формування LDI відбувається до безпосередньої візуалізації, і тому його ефективність не відбивається на швидкості візуалізації.

Однак LDI не дозволяє прямо відображати об'єкт із різними ступенями деталізації. Але була почата спроба створити багатосштабне подання на основі LDI з використанням так називаного дерева LDI (LDI tree).

Сутність методу полягає в наступному: замість одного LDI формується восьмеричне дерево, у кожному вузлі якого перебуває свій LDI і посилання на інші вузли, у яких перебуває LDI меншого розміру (в одиницях сцени), але того ж дозволу. Також для кожного вузла є обмежуючий паралелепіпед.

Всі LDI у дереві мають однаковий дозвіл. Висота дерева залежить від дозволу LDI. Чим менше дозвіл LDI, тим більше висота дерева. Кожен LDI у дереві містить інформацію тільки про ту частину сцени, що втримується в його обмежуючому паралелепіпеді. Обмежуючі паралелепіпеди вузлів наступного рівня дерева виходять дробленням обмежуючого паралелепіпеда поточного рівня на вісім рівних частин (рис. 2.4).

Рис. 2.4. Дерево із LDI

Дерево LDI дозволяє вирішувати проблему візуалізації дуже великих структур даних, використовуючи наступну ідею: при візуалізації немає необхідності обробляти нащадків вузла, якщо сам вузол забезпечує достатній ступінь деталізації. Автори використають наступний критерій ступеня деталізації: вважається, що LDI забезпечує достатній рівень деталізації, якщо "відбиток" (footprint, splat) його пікселя на результуючому зображенні покриває не більше одного пікселя екрана.

З іншого боку, використання того ж підходу дозволяє доповнити дані низької роздільної здатності штучно відновленими додатковими рівнями дерева, створюючи ефект фільтрації одержуваного зображення.

Візуалізація виробляється за допомогою обходу дерева від кореня до листів і малювання LDI методом Макмілана. При цьому обробка всіх вузлів дерева не потрібно, і обхід вітки дерева завершується на першому LDI, що забезпечує достатню точність.

Алгоритм має високу якість візуалізації, можливість прогресивної передачі даних. Однак його ефективність, як за часом, так і по пам'яті, досить низька. Час одержання зображення в дозволі 512х512 для LDI середньої складності на графічній станції SGI Onyx2 (16Гбайт оперативної пам'яті, 32 процесора MIPS R1000 250Mhz) зайняло більше трьох секунд.

Переваги даних алгоритмів: орієнтація на проблемну область; легкість одержання й моделювання.

Недоліки даних алгоритмів: складні, не завжди якісні методи візуалізації; труднощі з підтримкою багатомасштабності; робота тільки з дифузійними поверхнями.

2.1.5 Точкове подання

Класичні подання, засновані на зображеннях, спрямовані на використання зображень як примітиви візуалізації. Підвищення ефективності візуалізації досягається за рахунок того, що час візуалізації в них пропорційно не складності геометрії, як у традиційних системах, заснованих на полігональних сітках, а числу пікселів у вихідних зображеннях. Хоча такі підходи досить добре працюють для візуалізації складних об'єктів, вони, як правило, вимагають значних обсягів пам'яті, візуалізація страждає від появи артефактів у результуючому зображенні, а також від неможливості роботи з динамічним освітленням. Крім того, на сьогодні не розроблено ефективних багатомасштабних алгоритмів.

Клас точкових (point sample) алгоритмів компенсують недоліки IBМ при частковому збереженні описаних вище переваг [7].

Об'єкти моделюються, як щільний набір точок поверхні, які відновлюються з вихідних зображень і зберігаються разом з кольорами, глибиною й інформацією про нормалі, уможливлюючи використання Z-буфера для видалення невидимих поверхонь, затінення по Фонгу, і інші ефекти, наприклад, тіні (рис. 2.5).

Рис. 2.5. Дірки при візуалізації крапкових моделей

Метод візуалізації таких даних нагадує класичні методи деформацій (warping), але з тим розходженням, що точки містять додаткову інформацію про геометрію, і вони видонезалежні (view independent), тобто кольори точки не залежить від напрямку, з якого вона була відновлена. Подібний підхід використався для реалістичної візуалізації дерев [2].

Основною проблемою візуалізації моделей у таких поданнях є відновлення безперервних поверхонь, тобто гарантія відсутності дірок після того, як положення кожної крапки буде наведено до віконних координат. Одним з можливих практичних рішень є решітка (splatting), тобто обчислення форми «відбитка» точки на площині екрана. Решітка також часто використається в методах, заснованих на зображеннях. Можливі також інші підходи, наприклад комбінація ресемплінгу й ієрархічного z-буфера, недоліками яких є недостатнє використання сучасних апаратних прискорювачів, що виражається в часі візуалізації близько 3-5 секунд на кадр для нескладних сцен.

Головним недоліком точкових подань, як і багатьох інших, є складність із поданням великих обсягів даних. Використання неструктурованого набору крапок дозволяє досягти певної гнучкості при візуалізації, але при збільшенні обсягу на перший план виходять методи відео залежного спрощення, використати які в реальному часі не представляється можливим без введення додаткових структур даних.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Нет! Мы не выполняем работы на заказ, однако Вы можете попросить что-то выложить в наших социальных сетях.
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
4121
Авторов
на СтудИзбе
667
Средний доход
с одного платного файла
Обучение Подробнее