49170 (Стохастическое программирование), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Стохастическое программирование", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "49170"

Текст 2 страницы из документа "49170"

где ai j , bi — математические ожидания; , σ i j 2 , ө i 2 — дисперсии случайных величин aij , bi ; ta = Ф*-1(ai) — обратная функция нормального распределения при функции распределения:

2.5

где ai — заданный уровень вероятности (табл. 2.1).

Обычно решают задачи при ai > 0,5, поэтому даны значения ta только для положительных ta..

Таблица 2.1

ai

0,5

0,6

0,7

0,77

0,84

0,89

0,93

0,96

0,98

0,987

0,994

t a

0,0

0,25

0,5

0,75

1

1,25

1,5

1,75

2,0

2,25

2,5

Если же ai < 0,5; то t1-a = - ta. Так, для а = 0,4; t0,4 = t(1-0,6) = - t 0, 6 =0,25.

Детерминированный эквивалент задачи СТП в М-по- становке имеет вид

2.6

Из (2.6) следует, что для решения задачи стохастического программирования в М-постановке необходимы исходные данные, приведенные в предыдущей таблице.

Каждое 1-е ограничение в детерминированном эквиваленте (2.6) отличается от аналогичного ограничения задачи линейного программирования следующим:

2.7

  • о т детерминированных значений aij, bi выполнен переход к математическим ожиданиям случайных величин aij, bi;

  • появился дополнительный член ( ζ )

который учитывает все вероятностные факторы: закон распределения с помощью ta; заданный уровень вероятности ai ; дисперсии случайных величин aij равные σ ij 2; дисперсии случайных величин bi равные ө i 2.

3. Решение задач СТП

Детерминированный эквивалент задачи стохастического программирования в М-постановке включает ограничения, которые являются нееепарабельными функциями. Обозначим

3.1

тогда задачу стохастического программирования можно записать в сепарабельной форме:

3.2

где

Эта задача является сепарабельной задачей нелинейного программирования и может быть решена с помощью стандартных программных средств.

Функция F(x1, х2, хп) называется сепарабельной, если она может быть представлена в виде суммы функций, каждая из которых является функцией одной переменной, т. е. если

Если целевая функция и функции в системе ограничений задачи нелинейного программирования сепарабелъные, то приближенное решение может быть найдено методом кусочно-линейной аппроксимации.

Пример 1. Рассмотрим задачу распределения двух видов ресурсов для выпуска двух наименований изделий.

Решение. Ее модель:

где a i j , bi , cj — случайные.

При М-постановке модель запишется:

где a1, a2 — заданные уровни вероятности соблюдения каждого ограничения.

Для того чтобы решить задачу в М-постановке, необходимо перейти к ее детерминированному эквиваленту:

Исходные данные, необходимые для решения этой задачи, сведены в таблицах 3.3 и 3.4.

Таблица 3.3

Величина

С

d

D

X1

5

2

6

X2

8

3

9

Таблица 3.4

Ограничения

Случайные величины

ai1

ai2

bi

1

10

2

15

3

100

9

2

20

6

14

4

150

12

Если задать уровни вероятности a1,2 = 0,6, для которых ta = 0,25, то получим после подстановки исходных данных детерминированный эквивалент:

Результаты решения этой задачи для детерминированного случая ζ i = 0 и при a i = 0,6 (табл. 3.5), где

Таблица 3.5

Величина

ζ i = 0

a i = 0,6

Величина

ζ i = 0

a i = 0,6

x1

2

2

ζ1

0

4,4

x2

5,3

5,04

ζ2

0

5,8

L

52,4

50,3

γ1

0

4,4

β

0

4

γ2

0

5,1

Таблица 3.6

Величина

a1,2

0,5

0,6

0,77

0,89

0,96

0,987

x1

2

2

2

3,71

3,07

2,165

x2

5,3

5,04

4,51

3

3

3

L

52,4

50,3

46,1

42,6

39,3

34,8

β

0

4

12

18,7

25

33,6

γ1

0

4,4

12,3

17,9

24,3

33,3

γ2

0

5,1

14,8

16,5

23,2

26

Рассмотрим теперь, как повлияют на результат решения задачи величины, определяющие ее вероятностный характер. К таким величинам относят заданный уровень вероятности ai, и дисперсий σij2 и θi2. Начнем с анализа влияния ai (табл. 3.6).

Из анализа решения этой задачи можно сделать следующие выводы: для обеспечения гарантированного (с вероятностью a = 0,6) выполнения плана необходимо иметь дополнительно около 5% каждого вида ресурса. При отсутствии дополнительного ресурса целевой функции может уменьшиться на величину (β = 4% вследствие возможного сокращения выпуска продукции х2 от 5,3 до 5,04.

Этот пример подтверждает тот факт, что в реальных условиях для гарантированного выполнения плана необходимы дополнительные ресурсы в размере ζ i противном случае возможно уменьшение выпуска продукции.

При этом можно сделать выводы:

  1. в целях повышения заданного уровня вероятности выполнения плана ai требуется увеличить дополнительные ресурсы γi. Так, для выполнения плана с вероятностью, близкой к 1 (а = 0,987), необходим дополнительный ресурс в размере γi = 26, ..., 33% от величины используемого без учета вероятностных характеристик;

  2. отсутствие такого увеличения может привести к ухудшению целевой функции на величину β = 33,6%;

  3. возрастание a отражается на номенклатуре продукции. При этом в интервале a = 0,5, ..., 0,77 значение х1 сохраняется неизменным, а х2 — уменьшается. При дальнейшем увеличении а = 0,89, ..., 0,987 значение х2 = const, в то время как х1 сначала скачком растет, а затем постепенно уменьшается. Несмотря на то что при а = 0,89 значения x1,2 резко изменяются, целевая функция во всем интервале изменения а уменьшается плавно. Таково влияние заданного уровня вероятности соблюдения ограничений а на результат решения задачи.

Для большей реальности и выполнимости планов элементы модели должны постоянно уточняться по фактическим реализациям случайных величин.

Заключение

При написании курсовой работы по дисциплине «Математические методы» на тему « Стохастическое программирование » у меня возникали непонятности в теоритической части, так как каждый автор пишет по разному, но мне пришлось понимать и разбираться в каждой из книг.

Список литературы

1. « Математические методы в программировании » : / Агальцов В.П., Волдайская И.В. Учебник : – М . : ИД «ФОРУМ» : ИНФРА-М, 2006. – 224с. : ил. –(Профессиональное образование). – (Учимся программировать).

2. Лекции по дисциплине « Математические методы ».

3. «Математические методы: Учебник» / Партика Т.Л., Попов И.И. – М: ФОРУМ: ИНФРА, 2005.

4.Интернет сайт: http://ru.wikipedia.org/wiki/

5.«Математическое программирование» / Костевич Л., издательство «Новое знание», 2003.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Нет! Мы не выполняем работы на заказ, однако Вы можете попросить что-то выложить в наших социальных сетях.
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
4121
Авторов
на СтудИзбе
667
Средний доход
с одного платного файла
Обучение Подробнее