49048 (Создание макроса на языке Statistica Visual Basic для проверки гипотезы о нормальности остатков регрессии), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Создание макроса на языке Statistica Visual Basic для проверки гипотезы о нормальности остатков регрессии", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "49048"

Текст 2 страницы из документа "49048"

Для оценивания параметров применяется, как правило, метод наименьших квадратов. Уравнение регрессии с оцененными параметрами имеет вид

.[Салманов-44]

Практически в каждом отдельном случае величина у складывается из двух слагаемых:

где -фактическое значение результативного признака;

-теоретическое значение результативного признака, найденное исходя из соответствующей математической функции связи и , т. е. из уравнения регрессии;

- случайная величина, характеризующая отклонения реального значения результативного признака от теоретического, найденного по уравнению регрессии. . [Елисеева-35]

Общий смысл оценивания по методу наименьших квадратов заключается в минимизации суммы квадратов отклонений наблюдаемых значений зависимой переменной ( ) от значений, предсказанных моделью( ).

,

где S- суммы квадратов отклонений

-остаток в наблюдении j.[net]

Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели. Она включает в себя два круга вопросов: отбор факторов и выбор вида уравнения регрессии. [Елисеева-91]

Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям.

1. Они должны быть количественно измеримы. [Елисеева-92] Для исследования влияния качественных признаков в модель можно вводить бинарные (фиктивные) переменные, которые, как правило, принимают значение 1, если данный качественный признак присутствует в наблюдении, и значение 0 при его отсутствии.[Магнус 100]

2. Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются неинтерпретируемыми. [Елисеева-92]

Коэффициенты интеркорреляции (т. е. корреляции между объясняющими переменными) позволяют исключать из модели дублирующие факторы. Считается, что две переменных явно коллинеарны, т. е. находятся между собой в линейной зависимости, если .

По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Наибольшие трудности в использовании аппарата множественной регрессии возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью, т.е. имеет место совокупное воздействие факторов друг на друга. Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой, и нельзя оценить воздействие каждого фактора в отдельности. Чем сильнее мультиколлинеарность факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью метода наименьших квадратов (МНК). [Елисеева-94]

Выделим некоторые наиболее характерные признаки мультиколлинеарности.

  1. Небольшое изменение исходных данных (например, добавление новых наблюдений) приводит к существенному изменению оценок коэффициентов модели.

  2. Оценки имеют большие стандартные ошибки, малую значимость, в то время как модель в целом является значимой (высокое значение коэффициента детерминации R2 и соответствующей F-статистики).

  3. Оценки коэффициентов имеют неправильные с точки зрения теории знаки или неоправданно большие значения.[Магнус 94]

Подходы к отбору факторов на основе показателей корреляции могут быть разные. Наиболее широкое применение получили следующие методы построения уравнения множественной регрессии:

  • метод исключения;

  • метод включения;

  • шаговый регрессионный анализ.

Каждый из этих методов по-своему решает проблему отбора факторов, давая в целом близкие результаты - отсев факторов из полного его набора (метод исключения), дополнительное введение фактора (метод включения), исключение ранее введенного фактора (шаговый регрессионный анализ).

Как и в парной зависимости, возможны разные виды уравнений множественной регрессии: линейные и нелинейные. [Елисеева-100] Линейные модели регрессии могут быть описаны как линейные в двух отношениях: как линейные по переменным и как линейные по параметрам. Для линейного регрессионного анализа требуется линейность только по параметрам ( ), поскольку нелинейность по переменным ( ) может быть устранена с помощью изменения определений.[Доугерти 141]

В линейной множественной регрессии параметры при х называются коэффициентами регрессии ( ). Они характеризуют среднее изменение результата ( ) с изменением соответствующего фактора ( ) на единицу при неизмененном значении других факторов, закрепленных на среднем уровне. [Елисеева-100]

Оценка значимости коэффициентов чистой регрессии может быть проведена по t-критерию Стьюдента. В этом случае, как и в парной регрессии, для каждого фактора используется формула:

где - коэффициент чистой регрессии при факторе хi;

- средняя квадратическая ошибка коэффициента регрессии .

Для уравнения множественной регрессии

средняя квадратическая ошибка коэффициента регрессии может быть определена по следующей формуле:

где - среднее квадратическое отклонение для признака у;

- среднее квадратическое отклонение для признака ;

- коэффициент детерминации для уравнения множественной регрессии;

- коэффициент детерминации для зависимости фактора со всеми другими факторами уравнения множественной регрессии;

- число степеней свободы для остаточной суммы квадратов отклонений. [Елисеева-136-137]

Критический уровень t при любом уровне значимости зависит от числа степеней свободы, которое равно : число наблюдений минус число оцененных параметров. [Доугерти 154]

Практическая значимость уравнения множественной регрессии оценивается с помощью показателя множественной корреляции ( ) и его квадрата – коэффициента детерминации ( ). [Елисеева-112]

Показатель множественной корреляции может быть найден как индекс множественной корреляции:

где - общая дисперсия результативного признака;

- остаточная дисперсия для уравнения

Границы изменения индекса множественной корреляции: от 0 до 1. Чем ближе его значение к 1, тем теснее связь результативного признака со всем набором исследуемых факторов. [Елисеева-113]

Коэффициент детерминации определяет долю дисперсии , объясненную регрессией. [Доугерти 159]

Значимость уравнения множественной регрессии в целом оценивается с помощью F-критерия Фишера:

где - факторная сумма квадратов на одну степень свободы;

- остаточная сумма квадратов на одну степень свободы;

- коэффициент (индекс) множественной детерминации;

- число параметров при переменных (в линейной регрессии совпадает с числом включенных в модель факторов);

- число наблюдений. [Елисеева-129]

Смысл проверяемой гипотезы заключается в том, что все коэффициенты линейной регрессии, за исключением свободного параметра, равны нулю (случай отсутствия линейной функциональной связи).

Величина F имеет распределение Фишера с степенями свободы . Распределение Фишера - двухпараметрическое распределение неотрицательной случайной величины, являющейся в частном случае при m = 1 квадратом случайной величины, распределенной по Стьюденту. [Салманов 48]. В определенном смысле этот тест дополняет t-тесты, которые используются для проверки значимости вклада отдельных случайных переменных, когда проверяется каждая из гипотез .. [Доугерти 160]

Для проверки нулевой гипотезы при заданном уровне значимости по таблицам находится критическое значение Fкрит, и нулевая гипотеза отвергается, если .

Распределение Фишера может быть использовано не только для проверки гипотезы об одновременном равенстве нулю всех коэффициентов линейной регрессии, но и гипотезы о равенстве нулю части этих коэффициентов. Это особенно важно при развитии линейной регрессионной модели, так как позволяет оценить обоснованность исключения отдельных переменных или их групп из числа объясняющих переменных или, наоборот, включения их в это число. [Салманов 48].

2.2 Требования к остаткам

При оценке параметров уравнения регрессии применяется метод наименьших квадратов (МНК). При этом делаются определенные предпосылки относительно случайной составляющей . В модели

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Нет! Мы не выполняем работы на заказ, однако Вы можете попросить что-то выложить в наших социальных сетях.
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
4125
Авторов
на СтудИзбе
667
Средний доход
с одного платного файла
Обучение Подробнее