48803 (Решение задачи линейного программирования графическим методом), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Решение задачи линейного программирования графическим методом", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "48803"

Текст 2 страницы из документа "48803"

Первые постановки задач линейного программирования были сформулированы известным советским математиком Л.В.Канторовичем, которому за эти работы была присуждена Нобелевская премия по экономике.

В настоящее время линейное программирование является одним из наиболее употребительных аппаратов математической теории оптимального принятия решения.

Итак, линейное программирование - это наука о методах исследования и отыскания наибольших и наименьших значений линейной функции, на неизвестные которой наложены линейные ограничения. Таким образом, задачи линейного программирования относятся к задачам на условный экстремум функции.

1.3 Основная задача линейного программирования

Основная задача линейного программирования (ОЗЛП) ставится следующим образом: Имеется ряд переменных . Требуется найти такие их неотрицательные значения, которые удовлетворяли бы системе линейных уравнений:


{1.1}

и, кроме того, обращали бы в минимум линейную целевую функцию (ЦФ)

Очевидно, случай, когда ЦФ нужно обратить не в минимум, а в максимум, легко сводится к предыдущему, если изменить знак функции и рассмотреть вместо нее функцию

Допустимым решением ОЗЛП называют любую совокупность переменных , удовлетворяющую уравнениям (1.1).

Оптимальным решением называют то из допустимых решений, при котором ЦФ обращается в минимум.

На практике ограничения в задаче линейного программирования часто заданы не уравнениями, а неравенствами. В этом случае можно перейти к основной задаче линейного программирования.

Рассмотрим задачу линейного программирования с ограничениями-неравенствами, которые имеют вид

{1.2}

и являются линейно-независимыми. Последнее означает, никакое из них нельзя представить в виде линейной комбинации других. Требуется найти , которые удовлетворяют неравенствам и обращают в минимум



Введём уравнения:

{1.3}

где - добавочные переменные, которые также как и являются неотрицательными.

Таким образом, имеем общую задачу линейного программирования - найти неотрицательные , чтобы они удовлетворяли системе уравнений (1.3) и обращали в минимум .

Коэффициенты в формуле (1.3) перед равны нулю.

2. ГРАФИЧЕСКИЙ МЕТОД РЕШЕНИЯ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

2.1. Теоретическое введение

Графический метод довольно прост и нагляден для решения задач линейного программирования с двумя переменными. Он основан на геометрическом представлении допустимых решений и ЦФ задачи.

Каждое из неравенств задачи линейного программирования (1.2) определяет на координатной плоскости некоторую полуплоскость (рис.2.1), а система неравенств в целом – пересечение соответствующих плоскостей. Множество точек пересечения данных полуплоскостей называется областью допустимых решений (ОДР). ОДР всегда представляет собой выпуклую фигуру, т.е. обладающую следующим свойством: если две точки А и В принадлежат этой фигуре, то и весь отрезок АВ принадлежит ей. ОДР графически может быть представлена выпуклым многоугольником, неограниченной выпуклой многоугольной областью, отрезком, лучом, одной точкой. В случае несовместности системы ограничений задачи (1.2) ОДР является пустым множеством.

Все вышесказанное относится и к случаю, когда система ограничений (1.2) включает равенства, поскольку любое равенство

можно представить в виде системы двух неравенств (см. рис.2.1)

ЦФ при фиксированном значении определяет на плоскости прямую линию . Изменяя значения L, мы получим семейство параллельных прямых, называемых линиями уровня.

Это связано с тем, что изменение значения L повлечет изменение лишь длины отрезка, отсекаемого линией уровня на оси (начальная ордината), а угловой коэффициент прямой останется постоянным (см.рис.2.1). Поэтому для решения будет достаточно построить одну из линий уровня, произвольно выбрав значение L.

Вектор с координатами из коэффициентов ЦФ при и перпендикулярен к каждой из линий уровня (см. рис.2.1). Направление вектора совпадает с направлением возрастания ЦФ, что является важным моментом для решения задач. Направление убывания ЦФ противоположно направлению вектора .

Суть графического метода заключается в следующем. По направлению (против направления) вектора в ОДР производится поиск оптимальной точки . Оптимальной считается точка, через которую проходит линия уровня , соответствующая наибольшему (наименьшему) значению функции . Оптимальное решение всегда находится на границе ОДР, например, в последней вершине многоугольника ОДР, через которую пройдет целевая прямая, или на всей его стороне.

При поиске оптимального решения задач линейного программирования возможны следующие ситуации: существует единственное решение задачи; существует бесконечное множество решений (альтернативный оптиум); ЦФ не ограничена; область допустимых решений – единственная точка; задача не имеет решений.

Рисунок 2.1 Геометрическая интерпретация ограничений и ЦФ задачи.


2.2. Методика решения задач ЛП графическим методом.

  1. В ограничениях задачи (1.2) заменить знаки неравенств знаками точных равенств и построить соответствующие прямые.

  2. Найти и заштриховать полуплоскости, разрешенные каждым из ограничений-неравенств задачи (1.2). Для этого нужно подставить в конкретное неравенство координаты какой-либо точки [например, (0;0)], и проверить истинность полученного неравенства.

Если  неравенство истинное,

то    надо заштриховать полуплоскость, содержащую данную точку;

иначе (неравенство ложное) надо заштриховать полуплоскость, не содержащую данную точку.

Поскольку и должны быть неотрицательными, то их допустимые значения всегда будут находиться выше оси и правее оси , т.е. в I-м квадранте.

Ограничения-равенства разрешают только те точки, которые лежат на соответствующей прямой. Поэтому необходимо выделить на графике такие прямые.

  1. Определить ОДР как часть плоскости, принадлежащую одновременно всем разрешенным областям, и выделить ее. При отсутствии ОДР задача не имеет решений.

  2. Если ОДР – не пустое множество, то нужно построить целевую прямую, т.е. любую из линий уровня (где L – произвольное число, например, кратное и , т.е. удобное для проведения расчетов). Способ построения аналогичен построению прямых ограничений.

  3. Построить вектор , который начинается в точке (0;0) и заканчивается в точке . Если целевая прямая и вектор построены верно, то они будут перпендикулярны.

  4. При поиске максимума ЦФ необходимо передвигать целевую прямую в направлении вектора , при поиске минимума ЦФ – против направления вектора . Последняя по ходу движения вершина ОДР будет точкой максимума или минимума ЦФ. Если такой точки (точек) не существует, то можно сделать вывод о неограниченности ЦФ на множестве планов сверху (при поиске максимума) или снизу (при поиске минимум).

  5. Определить координаты точки max (min) ЦФ и вычислить значение ЦФ . Для вычисления координат оптимальной точки необходимо решить систему уравнений прямых, на пересечении которых находится .

3. ПРИМЕНЕНИЕ ГРАФИЧЕСКОГО МЕТОДА РЕШЕНИЯ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ НА ПРАКТИКЕ.

3.1 Экономическая постановка задачи линейного программирования

Предприятие электронной промышленности выпускает две модели радиоприемников, причем каждая модель производится на отдельной технологической линии. Суточный объем первой линии 60 изделий, второй линии 80 изделий. На радиоприемник первой модели расходуется 15 однотипных элементов электронных схем, на радиоприемник второй модели 10 таких же элементов. Максимальный суточный запас используемых элементов равен 950 единиц. Прибыли от реализации одного радиоприемника первой и второй моделей равны 40$ и 20$ соответственно. Определите оптимальные суточные объемы производства первой и второй моделей на основе графического решения задачи.

3.2 Построение математической модели.

Переменные задачи

В задаче  требуется установить, сколько радиоприемников первой и второй модели надо производить. Поэтому искомыми величинами, а значит, и переменными задачи являются суточные объемы производства каждого типа радиоприемников:

 – суточный объем производства радиоприемников первой модели, [шт/сутки];

 – суточный объем производства радиоприемников второй модели, [шт/сутки];

Целевая функция

Цель задачи  – добиться максимального дохода от реализации продукции. Т.е. критерием эффективности служит параметр суточного дохода, который должен стремиться к максимуму. Чтобы рассчитать величину суточного дохода от продажи радиоприемников обоих моделей, необходимо знать:

  • их объемы производства, т.е. и радиоприемников в сутки;

  • прибыль от их реализации  – согласно условию, соответственно 40 и 20 $.

Таким образом, доход от продажи суточного объема производства радиоприемников первой модели равен $ в сутки, а от продажи радиоприемников второй модели – $  в сутки. Поэтому запишем ЦФ в виде суммы дохода от продажи радиоприемников первой и второй модели:

[$/сутки]

Ограничения

Возможные объемы производства радиоприемников и ограничиваются следующими условиями:

  • количество элементов электронных схем, израсходованное в течении суток на производство радиоприемников обоих моделей, не может превышать суточного запаса этих элементов на складе;

  • суточный объем первой технологической линии (производство радиоприемников первой модели) не может превышать 60 шт в сутки, второй (производство радиоприемников второй модели) – 80 шт;

  • объемы производства радиоприемников не могут быть отрицательными.

Таким образом, все ограничения задачи делятся на 3 группы, обусловленные:

1) расходом элементов электронных схем;

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Нет! Мы не выполняем работы на заказ, однако Вы можете попросить что-то выложить в наших социальных сетях.
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
4144
Авторов
на СтудИзбе
666
Средний доход
с одного платного файла
Обучение Подробнее