48692 (Разработка технического и программного обеспечения автоматизированной системы научных исследований)

2016-07-30СтудИзба

Описание файла

Документ из архива "Разработка технического и программного обеспечения автоматизированной системы научных исследований", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "48692"

Текст из документа "48692"

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Севастопольский национальный технический университет

Кафедра технической кибернетики

КУРСОВОЙ ПРОЕКТ

по курсу «Обработка данных в автоматизированных системах»

«Разработка технического и программного обеспечений автоматизированной системы научных исследований»

(Альбом документов)

Выполнил:

ст. гр. А-41з

Брусинов С. Э.

Проверил:

Краснодубец Л. А.

Допущено к защите

Защищено с оценкой

Севастополь

2007

ОПИСЬ АЛЬБОМА

Отчет по курсовому проектированию содержит следующие документы:

- Техническое задание, где обозначены: цель проекта, технические требования, основные этапы работы и график их выполнения;

- Пояснительная записка, в которой представлено описание и принцип действия АСНИ; все расчеты заданного устройства и выводы по проделанной работе;

- Приложения, включающие: текст программы, принципиальную электрическую схему информационного измерительного канала и структурную схему программы.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Севастопольский национальный технический университет

Кафедра технической кибернетики

КУРСОВОЙ ПРОЕКТ

по курсу «Обработка данных в автоматизированных системах»

«Разработка технического и программного обеспечений автоматизированной системы научных исследований»

(Техническое задание)

Выполнил: ст.гр. А-41з

Брусинов С. Э.

Проверил:

Краснодубец Л.А.

Севастополь

2007

Севастопольский национальный технический университет

(наименование высшего учебного заведения)

Факультет Автоматики и вычислительной техники

Дисциплина Обработка данных в автоматизированных системах

Специальность Компьютеризированные системы, автоматика и управление

Курс IV Группа А-41з Семестр IХ

ЗАДАНИЕ

На курсовой проект студента

Брусинова Сервера Энверовича

(фамилия, имя, отчество)

1. Тема проекта Разработка технического и программного обеспечений автоматизированной системы научных исследований

2. Срок сдачи студентом законченного проекта (работы)

3. Исходные данные к проекту (работе)

Внутреннее сопротивление датчика - Rи=300

Выходное напряжение датчика - Uc =3,0мВ

Эффективное значение синфазной помехи - Uсф=1,2B

Максимальная погрешность от синфазной помехи - =3%

Частота работы АЦП Fд=2000Гц

Разрешение по частоте при определении спектральной плотности b=5Гц

Период дискретизации T=0.02c

Ошибка спектрального анализа =25%

4. Содержание расчётно-пояснительной записки (перечень подлежащих разработке вопросов)

1.Введение

2.Теоретические сведения

3.Разработка методического обеспечения

4.Разработка технического обеспечения

5. Разработка программного обеспечения

6.Тестирование ПО

7.Заключение

5. Перечень графического материала (с точным указанием обязательных чертежей)

6. Дата выдачи задания 22 июня 2007 года


КАЛЕНДАРНЫЙ ПЛАН

№п/п

Название этапов курсового проекта (работа)

Срок выполнения этапов проекта (работы)

Пометки

1

Получение задания, подбор литературы

2

Расчет дифференциального усилителя

3

Расчет фильтра низких частот и нормирующего усилителя

4

Разработка схем и алгоритмов программы

5

Написание программы

6

Оформление отчета

Студент__________________________________

(подпись)

Руководитель_____________________________ (подпись) (фамилия, имя, отчество)

«_____» ___________________________20___г.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Севастопольский национальный технический университет

Кафедра технической кибернетики

КУРСОВОЙ ПРОЕКТ

по курсу «Обработка данных в автоматизированных системах»

(Пояснительная записка)

Выполнил: ст.гр. А-41з

Брусинов С. Э.

Проверил:

Краснодубец Л.А.

.

Севастополь

2007

СОДЕРЖАНИЕ

1 ВВЕДЕНИЕ

2 РАЗРАБОТКА МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ

2.1 МЕТОДЫ ГЕНЕРАЦИИ ВРЕМЕННЫХ РЯДОВ

2.2 МЕТОДЫ ОЦЕНИВАНИЯ СПЕКТРАЛЬНЫХ ПЛОТНОСТЕЙ МОЩНОСТИ С ИСПОЛЬЗОВАНИЕМ ДИСКРЕТНОГО ПРЕОБРАЗОВАНИЯ ФУРЬЕ

3 РАЗРАБОТКА ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ

3.1 СТРУКТУРА АСНИ

3.2 РАСЧЁТ ДИФФЕРЕНЦИАЛЬНОГО УСИЛИТЕЛЯ

3.3 РАСЧЁТ ФИЛЬТРА НИЗКИХ ЧАСТОТ

3.4 РАСЧЕТ НОРМИРУЮЩЕГО УСИЛИТЕЛЯ

4 РАЗРАБОТКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

4.1 ОБЩИЕ СВЕДЕНИЯ

4.1.1 НАЗНАЧЕНИЕ ПРОГРАММЫ

4.1.2 ВХОДНЫЕ ДАННЫЕ

4.1.3 ВЫХОДНЫЕ ДАННЫЕ

4.2 ФУНКЦИИ

4.3 ТЕСТИРОВАНИЕ РАЗРАБОТАННОГО ПО

5 РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

ЗАКЛЮЧЕНИЕ

БИБЛИОГРАФИЯ

ПРИЛОЖЕНИЯ


1 ВВЕДЕНИЕ

Целью курсового проекта является разработка технического и программного обеспечения автоматизированной системы научных исследований (АСНИ).

АСНИ предназначена для спектрального анализа данных, поступающих от первичных преобразователей физических величин, характеризующих некоторый технологический процесс. В состав АСНИ входят следующие подсистемы:

    • подсистема измерений – информационно-измерительный канал (ИИК);

    • подсистема передачи данных;

    • подсистема обработки данных;

    • подсистема визуализации и документирования результатов.

В современных условиях необходимо внедрение средств микроэлектроники и вычислительной техники во все сферы народного хозяйства. Это обусловлено стремлением к повышению эффективности и качества производимой продукции.

В соответствии с заданием на курсовое проектирование необходимо разработать техническое и программное обеспечение: выполнить расчет информационно-измерительного канала автоматизированной системы научных исследований, состоящего из дифференциального усилителя и активного фильтра по исходным данным, а также разработать программу, выполняющую анализ поступающих сигналов.

2 РАЗРАБОТКА МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ

В состав методического обеспечения АСНИ включены методы генерации временных рядов и методы оценивания спектральных плотностей мощности.

2.1 Методы генерации временных рядов

Одной из важнейших задач, решаемых автоматизированными системами, является сбор и обработка данных, поступающих от первичных преобразователей (датчиков), установленных на объектах автоматизации. Эти данные рассматривают как временные ряды.

Временной ряд – это множество наблюдений, генерируемых последовательно во времени. В зависимости от того, как изменяется время: непрерывно или дискретно, различают временные ряды непрерывные и дискретные.

Современные автоматизированные системы обрабатывают данные с помощью компьютеров, поэтому все данные, которые поступают в виде аналоговых сигналов преобразуются в цифровую форму.

При исследовании процесса аналого-цифрового преобразования будут рассматриваться следующие временные ряды:

Х(t) - исходная физическая величина (непрерывный ряд);

х(t) - выходной сигнал датчика в вольтах, соответствующий функции Х(t) (непрерывный ряд);

С(t) - выход х(t) датчика, переведенный в непрерывные отсчёты (непрерывный ряд);

С(iT) - выход х(t) датчика, переведенный в непрерывные отсчёты, выполненные в дискретные моменты времени с периодом Т (дискретный ряд);

с(i) - выход х(t) датчика, переведенный в округленные отсчёты, полученные после операции квантования (дискретный временной ряд);

е(i) - погрешность, равная С(iT) - с(i).

Фиктивный временной ряд С(t) введен здесь только для удобства. Как временной ряд С(t) , так и ряд с(i) измеряются в одних единицах - отсчётах. Временной ряд С(t) есть просто результат линейного преобразования функции х(t), представленного формулой (2.1):

(2.1)

2.2 Методы оценивания спектральных плотностей мощности с использованием дискретного преобразования Фурье

Дискретное преобразование Фурье (финитное) определяется соотношением (2.2):

,

(2.2)

где

X(k) - значение (комплексное) дискретного преобразования Фурье, определенное в частоте с номером k;

x(i) - значение (вещественное) исходного временного ряда, определенное в момент времени с номером i;

T - период дискретизации;

N - количество отсчетов (длина) временного ряда.

Дискретное преобразование Фурье связывает спектральную характеристику (комплексный спектр) X(k), определенную в дискретных значениях частоты (с номером k), с дискретными значениями временного ряда (сигнала) x(i), определенными в дискретные моменты времени (с номером i).

Точность представления спектральной характеристики определяется разрешением по частоте

(2.3)

Обратное дискретное преобразование Фурье определяется соотношением (2.4):

(2.4)

Из сравнения формул (2.2) и (2.4) следует, что они отличаются знаком показателя экспоненты, множителем перед знаком суммы, а также переменной суммирования. Это позволяет строить единые программы для прямого и обратного преобразований Фурье.

Применяя формулу Эйлера, выражение (2.2) можно привести к виду (2.5):

(2.5)

где

(2.6)

Оценивание спектральной плотности мощности (СПМ) с помощью дискретного преобразования Фурье осуществляется по формуле (2.7):

(2.7)

Где X(k) - дискретное преобразование Фурье (спектральная характеристика) временного ряда , соответствующего процессу x(t);

T - период дискретизации процесса x(t);

N - длина временного ряда.

Черта в правой части формулы (2.7) означает операцию осреднения. Применение формулы (2.7) без операции осреднения приводит к получению "грубой" оценки СПМ. Формула (2.7) позволяет вычислить оценку СПМ посредством статистического осреднения модуля спектральной характеристики совокупности данных, поделенного на длину записи данных. Статистическое осреднение необходимо здесь потому, что ординаты спектральной характеристики являются случайными величинами изменяющимися для каждой используемой реализации случайного временного ряда .

Операция осреднения уменьшает статистическую изменчивость, или повышает статистическую устойчивость. В спектральном анализе случайных временных рядов на статистическую устойчивость влияют два параметра - разрешение по частоте и длина записи .

Можно показать, что оценки СПМ приближенно имеют распределение с n степенями свободы, где . Более того, для достаточно больших n, например, , распределение аппроксимируется гауссовским (нормальным) распределением. В этом случае нормированное стандартное отклонение (стандартное отклонение, связанное с оцениваемой величиной, т.е. процентная ошибка, или, в статистической терминологии, "коэффициент разброса") определяется соотношением (2.8):

(2.8)

Величину называют стандартной ошибкой.

Если , то .

Последний результат означает, что вычисление оценки СПМ с использованием полной длины временного ряда имеет стандартную ошибку, равную 100%.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Нет! Мы не выполняем работы на заказ, однако Вы можете попросить что-то выложить в наших социальных сетях.
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
4121
Авторов
на СтудИзбе
667
Средний доход
с одного платного файла
Обучение Подробнее