48332 (Проектирование аппаратуры передачи данных), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Проектирование аппаратуры передачи данных", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "48332"

Текст 2 страницы из документа "48332"

Средняя длительность перерывов tпр = 5 (мс) больше длительности единичных элементов (1,67 мс) и, следовательно пропадание единичного элемента возможно при любом методе регистрации. В кабельных каналах связи наиболее устойчивым является метод регистрации стробированием. Поэтому будем использовать эту регистрацию.

Максимально допустимая средне квадратичная величина краевых искажений вычисляется по формуле

кв = (эф - пр)/z (3.1.13)

где эф = 45 – 48 % - исправляющая способность

Искажение единичных элементов может происходить при сдвиге несущей частоты в каналообразующей аппаратуре. При этом с ЧМ сдвиг частоты приводит к постоянным преобладающим искажениям, величина которых пр может быть оценена выражением

пр = (dfB/(fFk))100% (3.1.14)

где df – сдвиг частоты в канале связи (не превышает 5 Гц для телефонных каналов);

f – девиация частоты (она равна 200 Гц);

Fk – рассчитанная эффективная полоса пропускания канала (940 Гц).

пр = (5600/(200940)) 100 % = 1,596 %

где z – аргумент функции Крампа, который мы можем найти, используя заданную допустимую вероятность ошибки регистрации

Ф(z) = 1 – P0 = 0,999 (3.1.15)

и из таблицы выбираем z = 3,30, тогда получаем

кв = (45 – 1,596) / 3,30 = 13,153 %.

Воспользовавшись найденными величинами, найдем отношение сигнал/помеха. Величина кв для систем с различными видами модуляции может быть найдена по формуле

кв =(В/(2*q*Fк))*100% (3.1.16)

Из этой формулы выражаем q:

q = (B100 %)/( кв 2Fк) = (600100)/(13,1532940) = 2.43 (3.1.17)

Рассчитаем эффективное значение помехи на входе первого фильтра приемника. Uп эф = 0,0022 В – по заданию.

Uc эф ≥qUп эф , следовательно

Uc эф = Uп эфq = 2,430,0022 = 0,0054 (В) (3.1.18)

Соответственно минимально допустимый уровень сигнала на выходе канала будет

Рс вых = 20lg(Uc эф/Uисх) = 20lg(0,0054/0,775) = -43 дБ (Uисх = 0,775 В) (3.1.19)

С учетом затухания канала минимальный уровень сигнала на выходе передающей части (входе канала) должен быть

Рс вх > Рс вых +аост =–43+20=–23дБ (3.1.20)

Для определения необходимости коррекции характеристики ГВП канала рассчитаем максимально допустимую величину ее неравномерности. Так как характеристика ГВП для канала ТЧ имеет обычно четко - симметричный характер, то

гр доп=1/В=1/600=0,001667 = 1,66710-3 (с) (3.1.21)

По техническому заданию неравномерность ГВП составляет 3*10-3 (с).

Расчет устройства синхронизации.

Определим допустимую погрешность синхронизации по формуле:

едоп = 0,5 – эф – пр = 0,5 – 0,45 – 0,01596 = 0,034 (3.1.22)

Динамическая составляющая погрешности определяется по формуле:

(3.1.23)

где mд – коэффициент деления делителя частоты;

S – коэффициент деления реверсивного счетчика;

Тс – время синхронизации.

Найдем неизвестные нам величины mд и S

Тс = S mд /В (3.1.24)

следовательно S mд = Тс B = 7 600 = 4200, тогда

Определим допустимую статическую погрешность синхронизации при заданных параметрах краевых искажений:

ест = едоп – един = 0,034 – 0,013 = 0,021 (3.1.25)

Допустимая величина коэффициента нестабильности задающих генераторов kf модулятора и демодулятора равна

kf = едоп /(2Вtпс) = 0,034 / (26001,6) = 1,7710-5 (3.1.26)

где tпс – время поддержки синхронизма.

Найдем коэффициент деления реверсивного счетчика и делителя частоты S и mд соответственно. Для этого решим систему:

(3.1.27)

ест = 1/mд + 4 kf S

Решив систему и округлив полученные значения, получим следующие результаты: S = 70, mд = 64. Следовательно, частота задающего генератора равна

f0 = mдfв = 64600 = 38400 Гц (3.1.28)

3.2 Расчет параметров обратного канала

Вместе с прямым каналом передачи возможно применение обратного канала связи с ЧМ и скоростью 75 бод.

Частота передачи двоичной единицы для обратного канала f1= 390 Гц, а частота передачи двоичного нуля f0= 450 Гц (справочные данные).

Допустимое отклонение характеристических частот номинального значения для обратного канала ±4 Гц (справочные данные).

Длительность единичного элемента для обратного канала:

0 = 1/V = 1/75 = 13 (мс) (3.2.1)

где V – скорость передачи обратного канала.

Отношение несущей частоты к модулирующей для передачи по обратному каналу

для «1»: f1 / fмод = 390 / 75 = 5,2 (3.2.2)

для «0»: f0 / fмод = 450 / 75 = 6 (3.2.3)

Так как отношения больше 3, то «отраженный спектр» при передаче отсутствует. Несущая частота, вырабатываемая генератором:

Fcp = (f1 окс + f0 окс) / 2 = (390 + 450) / 2 = 420 Гц (3.2.4)

Требуемая ширина пропускания fпф окс фильтров передачи определяется по формуле:

fпф окс = 1,42В = 1,4275 = 107 Гц (3.2.5)

С учетом допуска на временную и температурную нестабильность параметров фильтра берем fпф окс = 120 Гц (то есть на 10 % больше обычного).

Тогда полоса пропускания фильтра будет

fпф окс = (420 – 120/2; 420 + 120/2)=(360-420) Гц (3.2.6)

Вероятность ошибочного приема единичных элементов Роп вычисляется по следующей формуле

Роп = 0,5 (tпрvпр)/36000В = 0,5510-38/360075 = 5,610-6 (3.2.7)

где tпр – средняя длительность перерывов в долях от 0

vпр – интенсивность перерывов.

Максимально допустимая вероятность ошибок приема при В = 75 бод (P0 = 10-4).

Максимально допустимая вероятность ошибок на выходе УПС при воздействии флуктуационных помех

Роф < Р0 – Роп (3.2.8)

Роф < 10-4 – 5,510-6 = 0,9510-5

3.3 Разработка передающей части УПС

Структурная схема передающей части УПС изображена на рисунке 3.3.1

в канал связи


Рисунок 3.3.1 – Структурная схема передающей части УПС

Полосы пропускания полосовых фильтров ПФ1 и ПФ2, частоты генераторов Г1 и Г2 рассчитаны в пункте 3.1. Выберем модуляторы М1 и М2 и рассчитаем их параметры.

В настоящее время в УПС применяются в основном модуляторы ЧМ-сигналов, которые называют цифровыми. Они построены на основе цифровых элементов. Использование опорного генератора, стабилизированного кварцем, и элементов цифровой техники позволяет строить схемы модуляторов, обладающих высокой временной и температурной стабильностью и малой зависимостью параметров генерируемых сигналов от колебаний напряжения источника питания.

Модуляторы, построенные по принципу цифровых, имеют ряд недостатков: сравнительно широкий спектр прямоугольных ЧМ-сигналов, что вынуждает применять сложные ФНЧ высокого порядка; разрыв фазы ЧМ-колебаний, вызываемый изменением информационного сигнала в случайные моменты времени по отношению к окончанию периода колебания на выходе управляемого делителя. Схемы синхронизации являются громоздкими и вызывают дополнительные краевые искажения модулированных сигналов. Более перспективными являются ЧМ-модуляторы со ступенчатой аппроксимацией синусоидального сигнала. В схеме такого модулятора имеется функциональный цифроаналоговый преобразователь (ФЦАП), вход которого соединен с выходом управляемого делителя частоты (УДЧ), а его выход – с ФНЧ. Структурная схема ЧМ-модулятора со ступенчатой аппроксимацией синусоидального сигнала и временные диаграммы его работы представлены на рисунке 3.3.2, а, б. Синусоидальный сигнал формируется kст ступеньками напряжения. Как видно из временной диаграммы, переключение частоты происходит плавно, а краевые искажения сигналов на выходе такого модулятора в kст меньше, чем в модуляторах без ФЦАП. Так как для аппроксимации синусоиды используется четное число ступенек kст , то в спектре такого сигнала будут только нечетные гармоники, ближайшей после первой гармоники будет (kст -1)-я гармоника, следующей – (kст +1)-я и т.д.

а)

б)

Рисунок 3.3.2 – ЧМ–модулятор со ступенчатой аппроксимацией сигнала: а – структурная схема; б – временные диаграммы

Коэффициент искажения синусоиды за счет аппроксимации Ки определяется на основании спектрального анализа:

Kи = 2π/( kст - ) (3.3.1)

Так как коэффициент искажения синусоидального сигнала должен быть не более 12%, определим необходимое число ступенек аппроксимирующего сигнала

kст ≥ 2π/(Ки ) = 2π/(0,12 ) = 15,1 (3.3.2)

Округлим kст до ближайшего большего целого четного числа: kст = 16.

Количество ступенек сигнала для прямого и обратного каналов совпадают. Высота i–й ступеньки аппроксимированной синусоиды в относительных единицах определяется по формуле:

Ui = sin [ 360 (i+0,5) / kст ], i = 0,1,2,…, ( kст - 1 ) (3.3.3)

Рассчитав данные значения, построим ступенчатую аппроксимацию синусоидального сигнала, изображенную на рисунке 3.3.3.

Рисунок 3.3.3 – Ступенчатая аппроксимация синусоидального сигнала

При использовании ИМС более высокой степени интеграции, а также в микропроцессорных УПС для формирования синусоидальных сигналов целесообразно использовать построенное запоминающее устройство (ПЗУ) и цифроаналоговый преобразователь (ЦАП). Обычно каждый из этих функциональных узлов выполняется в виде отдельной ИМС. Схема преобразования цифровой последовательности в синусоидальный сигнал приведена на рис 3.3.4. Адресная шина ПЗУ подключается к выходам двоичного счетчика СТ2, вход которого соединен с выходом УДЧ модулятора, либо к адресной шине микропроцессора УПС. В ячейки ПЗУ в цифровом виде заносятся значения напряжений синусоиды, соответствующие своим фазовым углам ∆φ (см. рис. 3.3.3) Количество слов, хранимых в ПЗУ, равно kст . Емкость ПЗУ можно уменьшить до kст/4, при этом существенно усложнится схема формирования адресов. Разрядность слова ПЗУ np зависит от точности воспроизведения ступенчатого напряжения. На практике достаточно принять np=8 с учетом знакового разряда, что обеспечивает погрешность формирования напряжения менее 1%.

Рисунок 3.3.4 – Цифровой формирователь синусоидальных сигналов на основе ПЗУ

В микропроцессорных УПС адресации ПЗУ осуществляется программным способом. Время нахождения адреса ta на соответствующей шине микропроцессора определяется программой и зависит от частоты формируемой синусоиды fi вых выходного сигнала

ta = 1/( fi вых kст) (3.3.4)

3.4 Разработка приемной части УПС

Структурная схема приемной части УПС изображена на рисунке 3.4.1


Рисунок 3.4.1 – Структурная схема приемной части УПС

Демодуляторы ЧМ-сигналов современных систем передачи данных строятся преимущественно на цифровых элементах. Входной сигнал в схеме демодулятора преобразуется в прямоугольную последовательность импульсов, постоянная составляющая которой зависит от частоты демодулируемого колебания. Помехоустойчивость таких демодуляторов несколько ниже, чем у частотных дискриминаторов с колебательными контурами. Высокая стабильность параметров схемы, отсутствие необходимости регулировок в процессе эксплуатации обусловили широкое применение их на практике.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5138
Авторов
на СтудИзбе
442
Средний доход
с одного платного файла
Обучение Подробнее