48208 (Проблематика штучного інтелекту)

2016-07-30СтудИзба

Описание файла

Документ из архива "Проблематика штучного інтелекту", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "48208"

Текст из документа "48208"

М і н і с т е р с т в о о с в і т и і н а у к и У к р а ї н и

Н а ц і о н а л ь н и й у н і в е р с и т е т “Львівська політехніка

Кафедра „ІСМ”

Курсова робота

на тему: „Проблематика штучного інтелекту”

з дисципліни: Системи штучного інтелекту

Виконав:

ст. гр. ФЛ-44

Водарський Я.Є.

Прийняв:

Марковець О.В.

Львів-2007

Зміст курсової роботи

Вступ 3

1.1. Інтуїтивне розуміння поняття “інтелект” 4

1.2. Деякі визначення та їх критика 7

2.1 Основні проблемні середовища штучного інтелекту 8

2.2 Проблема винятків 9

2.3 Проблема неточних і неповних знань 11

2.4 Деякі проблеми виведення 12

3.1 Деякі інтелектуальні задачі 13

3.2 Тест Тьюринга і фатичний діалог 17

3.3 Метод комп’ютерної реалізації фатичного діалогу 18

3.4 Групові залежності. Проблемні сфери. 20

3.5 Принцип віртуальної семантичної сітки. 21

4.1 Продукційні правила 22

4.2 Компонент виведення 22

4.3 Нечітке виведення 22

5. Фрейми 24

6.1 Семантичні мережі 25

6.2 Різні способи задання семантичних мереж: переваги і недоліки 27

7. Нейронні мережі 30

8. Генетичні алгоритми 32

Висновок 34

Використана література 35

Вступ

Основним завдвнням цієї курсової роботи є знаходження і розкриття суттєвих проблемних середовищ штучного інтелекту, з якими ми стикаємося при розвязанні інтелектуальних задач.

Можна стверджувати, що “штучний” інтелект у тому чи іншому розумінні повинен наближатися до інтелекту природного і у ряді випадків використовуватися замість нього; так само, як, наприклад, штучні нирки працюють замість природних. Чим більше буде ситуацій, у яких штучні інтелектуальні системи зможуть замінити людей, тим більш інтелектуальними будуть вважатися ці системи.

Центральні задачі ШІ полягають в тому, щоб зробити ОМ більш корисними і щоб зрозуміти принципи, що лежать в основі інтелекту. Оскільки одна із задач полягає в тому, щоб зробити ОМ більш корисними, вченим і інженерам, що спеціалізуються в обчислювальній техніці, необхідно знати, яким чином ШІ може допомогти їм в розв"язку важких проблем.

Досліджувана тема стає все більш актуальною, оскільки область застосування систем штучного інтелекту поширюється в різних галузях і включає: доведення теорем; ігри; розпізнавання образів; прийняття рішень; адаптивне програмування; створення машинної музики; обробка даних природною мовою; мережі, що навчаються (нейромережі); вербальні концептуальні навчання та ін.

1.1. Інтуїтивне розуміння поняття “інтелект”

З давніх-давен людині були необхідні помічники для полегшення виконання тих чи інших операцій. Були винайдені різноманітні механізми, машини і т.п. Поява електронно-обчислювальних машин дала змогу автоматизувати виконання трудомістких розрахункових робіт. Згодом стало ясно, що ці машини можна використовувати не тільки для обчислень, але й для керування різними пристроями, складними автоматизованими виробництвами тощо. Широкого поширення набули роботи - програмно керовані пристрої, здатні безпосередньо взаємодіяти з фізичним світом та виконувати в ньому певні дії [Крин]. Такі роботи широко використовуються у виробництві.

Природня мова на сучасному етапі малопридатна для цього через свою складність та неоднозначність. Один із шляхів вирішення цієї задачі є формулювання інструкцій мовою, зрозумілою виконавцю, тобто написання програм. Програмування полягає у перекладі інструкцій, написаних мовою, близької до природної, на мову, яку здатна сприйняти обчислювальна система. Відомі складності сучасного програмування, пов’язані з необхідністю надмірної алгоритмізації, тобто детального ретельного розписування інструкцій з урахуванням усіх можливих ситуацій. З цієї ситуації існує єдиний вихід - підвищення рівня “розумності”, інтелектуальності сучасних комп’ютерів та роботів. Постає питання, що розуміється під такими поняттями, як “інтелектуалізація”, "штучний інтелект"?

Можна стверджувати, що “штучний” інтелект у тому чи іншому розумінні повинен наближатися до інтелекту природного і у ряді випадків використовуватися замість нього; так само, як, наприклад, штучні нирки працюють замість природних. Чим більше буде ситуацій, у яких штучні інтелектуальні системи зможуть замінити людей, тим більш інтелектуальними будуть вважатися ці системи.

Навряд чи є сенс протиставляти поняття штучного інтелекту і інтелекту взагалі. Тому слід спробувати визначити поняття інтелекту, незалежно від його походження.

Людина вважається інтелектуальною “від природи”, і цей інтелект був вироблений на протязі мільйонів років еволюції. Людина вміє вирішувати багато інтелектуальних задач. Кожна людина вважає, що вона розуміє значення слова “інтелект”, але якщо попросити дати визначення цього слова, в переважній більшості чіткої відповіді не буде. І дійсно, дати визначення поняття інтелекту, яке б задовольняло всіх, очевидно, неможливо. Далі будуть проаналізовані деякі спроби визначення цього поняття та їх критика. Але відсутність чіткого визначення не заважає оцінювати інтелектуальність на інтуїтивному рівні. Можна навести як мінімум два методи такої оцінки: метод експертних оцінок іметод тестування [Посп ].

При застосуванні методу експертних оцінок рішення про ступінь інтелектуальності приймає досить велика група експертів (незалежно або у взаємодії між собою); відомо багато способів організації взаємодії між експертами.

При застосуванні методу тестування пропонується розв’язати ті чи інші тестові завдання. Існує значна кількість інтелектуальних тестів, апробованих практикою, для оцінки рівня розумових здібностей людини, що знайшли застосування в психології та психіатрії [ Айзенк, Дюк, Клайн]. Наведемо декілька прикладів.

Приклад 1.1. Вставте число, яке пропущене:

36 30 24 18 6

Приклад 1.2. Викресліть зайве слово:

лев лисиця жираф щука собака

Потрібно наголосити, що поняття “штучний інтелект” не можна зводити лише до створення пристроїв, які повністю або частково імітують діяльність людини. Не менш важливою є інша задача: виявити механізми, які лежать в основі діяльності людини, щоб застосувати їх при вирішенні конкретних науково-технічних задач. І це лише одна з можливих проблем.

Отже, штучний інтелект (ШІ) - це наука про концепції, що дозволяють обчислювальним машинам (ОМ) робити такі речі, які у людей виглядають розумними. Але що ж являє собою інтелект людини? Чи є у них здатність роздумувати? Чи є здатність засвоювати і використовувати знання? Чи є здатність оперувати і обмінюватися ідеями? Безсумнівно, всі ці здібності являють собою частину того, що є інтелектом. Насправді дати визначення в звичайному значенні цього слова, мабуть, неможливо, тому що інтелект - це сплав багатьох навичок в області обробки і представлення інформації.
Центральні задачі ШІ полягають в тому, щоб зробити ОМ більш корисними і щоб зрозуміти принципи, що лежать в основі інтелекту. Оскільки одна із задач полягає в тому, щоб зробити ОМ більш корисними, вченим і інженерам, що спеціалізуються в обчислювальній техніці, необхідно знати, яким чином ШІ може допомогти їм в розв"язку важких проблем.

Область застосування.

  • Доведення теорем;

  • Ігри;

  • Розпізнавання образів;

  • Прийняття рішень;

  • Адаптивне програмування;

  • Створення машинної музики;

  • Обробка даних природною мовою;

  • Мережі, що навчаються (нейромережі);

  • Вербальні концептуальні навчання.

На початку 80-х років у дослідженнях зі штучного інтелекту сформувався самостійний напрямок, що одержав назву "експертні системи" (ЕС).

Експертна система - це програмний засіб, що використовує експертні знання для забезпечення високоефективного вирішення неформалізованих задач у вузькій предметній області. Основу ЕС складає база знань (БЗ) про предметну область, що накопичується в процесі побудови й експлуатації ЕС. Нагромадження й організація знань - найважливіша властивість усіх ЕС.

1.2. Деякі визначення та їх критика

Було зроблено чимало спроб дати формальне визначення поняття інтелекту, зокрема, штучного. Очевидно, найбільш відомим є визначення предмету теорії штучного інтелекту, яке було введене видатним дослідником у галузі штучного інтелекту Марвіном Мінським. Воно потрапило до багатьох словників та енциклопедій з невеликими змінами і відображає таку основну думку: “штучний інтелект є дисципліна, що вивчає можливість створення програм для вирішення задач, які при вирішенні їх людиною потребують певних інтелектуальних зусиль”. Але і це визначення має вади. Головна з них полягала в поганій формалізації поняття “певні інтелектуальні зусилля”. “Певних інтелектуальних зусиль” вимагає, наприклад, виконання простих арифметичних операцій, але чи можна вважати інтелектуальною програму, яка здатна до виконання тільки таких операцій? Відтак у ряді книг та енциклопедій до наведеного визначення додається поправка: "сюди не входять задачі, для яких відома процедура їх розв’язку". Важко вважати таке формулювання задовільним. Розвиваючи цю думку далі, можна було б продовжити: отже, якщо я не знаю, як виконувати деяку задачу, то вона є інтелектуальною, а якщо знаю - то ні. Наступний крок - це відомі слова Л.Теслера: “Штучний інтелект - це те, чого ще не зроблено” [Мичи]. Цей парадоксальний висновок лише підкреслює дискусійність проблеми.

Є деякі більш конструктивні визначення інтелекту. Наприклад, в [Ендрю] наводиться одне з них: “інтелект є здатність правильно реагувати на нову ситуацію”. Там же наводиться і критика цього визначення: не завжди зрозуміло, що слід вважати новою ситуацією. Уявіть собі, наприклад, звичайний калькулятор. Цілком імовірно, що на ньому ніколи не обчислювали суму двох нулів. Тоді завдання “обчислити нуль плюс нуль” можна вважати ситуацією, новою для калькулятора. Безумовно, він з нею впорається (“правильно відреагує на нову ситуацію”), але чи можна на цій підставі вважати його інтелектуальною системою?

2.1 Основні проблемні середовища штучного інтелекту

Виділимо декілька типів проблемних середовищ, що найбільш часто зустрічаються.

Тип 1. Статичне проблемне середовище: статична предметна область; сутності представляються як сукупність атрибутів і їхніх значень; склад сутностей незмінний; БЗ не структуровані; вирішуються статичні задачі аналізу, використовуються тільки спеціалізовані що виконуються твердження.

Тип 2. Статичне проблемне середовище: статична предметна область; сутності представляються у виді атрибутів із значеннями або вироджених об'єктами (фреймів); склад сутностей незмінний; ієрархія БЗ або відсутня, або слабко виражена (нема спадкування властивостей); вирішуються статичні задачі аналізу, використовуються спеціалізовані твердження, що виконуються.

Тип 3. Статичне проблемне середовище: статична предметна область; сутності представляються у виді об'єктів; склад сутностей змінюваний; БЗ структуровані; вирішуються статичні задачі аналізу і синтезу, використовуються загальні і спеціалізовані що виконуються твердження.

Тип 4. Динамічне проблемне середовище: динамічна предметна область; сутності представляються сукупністю атрибутів і їхніх значень; склад сутностей незмінний; БЗ не структуровані; вирішуються динамічні задачі аналізу, використовуються спеціалізовані твердження, що виконуються.

Тип 5. Динамічне проблемне середовище: динамічна предметна область; сутності представляються у виді об'єктів; змінюваний склад сутностей; БЗ структуровані; вирішуються динамічні задачі аналізу і синтезу; використовуються загальні і спеціалізовані що виконуються твердження.

2.2 Проблема винятків

З успадкуванням пов’язана дуже серйозна проблема – проблема винятків. Вона полягає в тому, що деякі підкласи можуть не успадковувати ті чи інші властивості надкласів. Інакше кажучи, характерні риси класу успадковуються всіма його підкласами, крім деяких.

Нехай відомо, що літають всі птахи, крім пінгвінів (існують деякі інші види птахів, які не літають. Але для наших цілей це не має суттєвого значення). Якби це твердження відразу потрапило до бази знань саме в такому вигляді, особливих проблем не виникало б (хоча і в цьому випадку треба було б передбачити належну обробку винятків).

Але, як було зазначено раніше, експерт не завжди може сформулювати свої знання в явному вигляді. Зокрема, він може не знати або не пам”ятати всіх винятків. Тому він може спочатку включати до бази знань твердження про те, що всі птахи літають, а потім пригадати, що пінгвіни не літають, і додати це до бази знань.

У результаті ми могли б отримати базу знань, подібну до такої:

Рис. 1. Ілюстрація наслідування та обробки виключень

Усі птахи літають.

Ластівка є птахом.

Юкко є ластівкою.

Пінгвін є птахом.

Пінгвіни не літають.

Бакс є пінгвіном.

Якби три останні твердження не були включені до бази знань, система просто дійшла б хибного висновку, що Бакс літає. Але включення даних відомостей до бази знань ще більше ускладнює ситуацію. Система знань стає суперечливою: зодного боку, система повинна дійти висновку, що Бакс літає, а з іншого – що Бакс не літає. У даному випадку кажуть про втрату монотонності дедуктивної системи.

Система дедуктивного виведення називається монотонною, якщо виконується така властивість: якщо з набору тверджень (q1,…, qn) випливає твердження v , то v випливає і з набору тверджень (q1,…., qn, r).

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Нет! Мы не выполняем работы на заказ, однако Вы можете попросить что-то выложить в наших социальных сетях.
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
4100
Авторов
на СтудИзбе
670
Средний доход
с одного платного файла
Обучение Подробнее