48180 (Приложения технологии языка программирования Паскаль в прикладной механике), страница 5

2016-07-30СтудИзба

Описание файла

Документ из архива "Приложения технологии языка программирования Паскаль в прикладной механике", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "48180"

Текст 5 страницы из документа "48180"

V= Vx 2+ Vу2 = Vx12 + Vу12 (6*)

Направляющие косинусы даются равенствами:

cos (V,X)= Vx/V , cos (V,У)= Vy/V (7*)

cos (V,X)= Vx/V , cos (V,У)= Vy/V (8*)

Графоаналитические методы. Первый графоаналитический способ определения скоростей точек плоской фигуры основан на формуле распределения скоростей (рис.2).

Рис. 2. Геометрическая модель плоской фигуры

V=Vo1+W r , (9*)

в этой формуле

V – искомая скорости точки М;

Vo1 - скорость полюса О,

W - угловая скорость плоской фигуры;

r - радиус-вектор , проведенный из полюса О в Рис. 3 точку М.

Таким образом, зная скорость какой-либо точки плоской фигуры, выбираем эту точку за полюс. Далее откладываем от точки М, скорость которой подлежит определению, вектор, равный скорости полюса, и вектор W r1, направлен перпендикулярно к r1, и равный по величине W r1.Векторная сумма этих слагаемых и дает искомую скорость точки М, Если скорость точки М известна по направлению, то можно не знать величины вращательной скорости W r1, так как и эта скорость, и искомая скорость точки М определяется пересечением прямой, совпадающей с направлением скорости точки М, и прямой, перпендикулярной к линии О М, проведенной из конца вектора , отложенного из точки М.

После того, как треугольник или параллелограмм скоростей выражающий равенство (9*), построен, задача может считаться решенной. Величина и направление скорости точки М могут быть найдены по рис.(2) или получены из решения этого треугольника.

Формула распределения скоростей (9*)записывается часто в виде:

Vb=Va+Vba (9**)

где V-искомая скорость точки В, Va-известная скорость точки А , избранной за полюс, а

Vba= W АВ, Vba = W AB, (9***)

- вращательная скорость точки В вокруг точки А, равная по модулю, произведению мгновенной угловой скорости плоской фигуры на расстояние от точки до полюса и направленная перпендикулярно к отрезку прямой ВА в сторону мгновенного вращения фигуры.

Многие задачи могут быть решены при помощи теоремы о равенстве проекции скоростей концов отрезка плоской фигуры на направление отрезка.

Второй графоаналитический метод определения скоростей плоской фигуры основан на использовании мгновенного центра скоростей этой фигуры. При не поступательном движении плоской фигуры (W=0) в каждый данный момент существует точка тела , скорость которой равна нулю. Эта точка называется мгновенным центром скоростей и обычно обозначается через P. Единственным исключением является случай так называемого мгновенно поступательного движения (W=0), который будет рассмотрен отдельно. Выбирая мгновенный центр за полюс, имеем закон распределения скоростей в плоской фигуре.

V=W r 1, V=W М Р , (10*)

где V-искомая, скорость произвольной точки М; W-угловая скорость плоской фигуры, r1-радиус-вектор, проведенный из мгновенного центра скоростей в точку М, называемый мгновенным радиусом. Таким образом, скорости всех точек плоской фигуры являются в данный момент вращательными скоростями вокруг мгновенного центра скоростей. Их величина равна произведению величин угловой скорости на модуль мгновенного радиуса, а направлены они перпендикулярно к мгновенному радиусу. Таким образом, величина скоростей точки плоской фигуры пропорциональны величине мгновенных радиусов:

Vb / ВР=Va / АР=...=W, (11*)

При графоаналитических методах решения задач рекомендуется такая последовательность действий:

  1. Выбрать за полюс ту точку плоской фигуры, направление скорости которой известно;

  2. найти другую точку плоской фигуры, направление скорости которой известно;

  1. пользуясь формулой распределения скоростей, найти скорость этой точки плоской фигуры;

  2. исходя из формулы распределения скоростей определить значение угловой скорости плоской фигуры в данный момент времени;

  3. зная угловую скорость фигуры и скорость полюса, найти с помощью формулы распределения скоростей искомые скорости других точек фигуры.

При графоаналитическом методе решения задач может быть применен метод проекции. В этом случае может быть рекомендован следующий порядок решения задач:

  1. 1. Выбрать за полюс точку плоской фигуры, скорость которой известна;

  2. 2. Пользуясь формулой распределения скоростей, построить скорость другой точки плоской фигуры, у которой известно направление ее скорости;

  3. 3. Спроектировать полученный треугольник скоростей на направление прямой, соединяющей обе точки, и найти скорость второй точки;

  4. 4. Спроектировать треугольник скоростей на направление, перпендикулярное к прямой, соединяющей обе точки, и найти вращательную скорость второй точки по отношению к полюсу;

  5. 5. Разделив вращательную скорость на расстояние от точки до полюса, найти мгновенную угловую скорость плоской фигуры;

  6. 6. Зная мгновенную угловую скорость фигуры, можно найти скорости любых точек плоской фигуры, пользуясь формулой распределения скоростей.

Если задача решается при помощи мгновенного центра скоростей, рекомендуется такая последовательность:

  1. определить положение мгновенного центра плоской фигуры;

  2. найти величину мгновенного радиуса той точки плоской фигуры, скорость которой известна и определить угловую скорость плоской фигуры, разделив величину скорости точки на величину мгновенного радиуса;

  3. найти искомые величины скоростей точек плоской фигуры, умножая угловую скорость на мгновенный радиус соответствующей точки или используя.

Теперь рассмотрим конкретную задачу по кинематике.

Задача. Для преобразования периодического возвратно-поступательного движения во вращательное движение в двигателях внутреннего сгорания применяют шатунно-кривошипный механизм, состоящий из кривошипа ОА=r, вращающегося вокруг неподвижной точки О в плоскости рисунка, шатуна АВ=l, шарнирно соединенного с кривошипом, и поршня В, двигающегося по горизонтальным направляющим цилиндра, совпадающим с прямой ОВ.

Рис. 3. Геометрическая модель плоского шатунно-кривошипного механизма

На основе разработанного алгоритма решения задачи по кинематике составим Паскаль – программу.

Program Kinematika;

Var t,f0,k,b1,b2,x1,x2,a,b,l,d,f1,f2,a1,a2,w1,w:real;

Begin

Write('vvedite welichini a b d l w t = ');

Readln(a,b,d,l,w,t);

x1:=(sqr(d+b)-a*a+l*l)/(2*l*(d+b));

f1:=(180/pi)*arctan(sqrt(1-sqr(x1))/x1);

x2:=(sqr(d+b)-a*a-l*l)/(2*l*a);

a1:=(180/pi)*arctan(sqrt(1-sqr(x2))/x2);

x1:=-(l*l+sqr(d-b)-a*a)/(2*l*(d-b));

f2:=(180/pi)*arctan(sqrt(1-sqr(x1))/x1);

x2:=(l*l-sqr(d-b)+a*a)/(2*l*a);

a2:=(180/pi)*arctan(sqrt(1-sqr(x2))/x2);

f0:=w*t;

k:=sqrt(l*l+b*b-2*l*b*cos(f0));

x1:=(k*k+d*d-a*a)/(2*k*d);

b2:=arctan(sqrt(1-sqr(x1))/x1);

x2:=(1/k)*sin(f0);

b1:=arctan(x2/sqrt(1-sqr(x2)));

w1:=(b*k*sin(b1+b2)*w)/(a*a*sin(b2));

Writeln('a1= ', a1:6:3,' a2= ',a2:6:3);

Writeln('f1= ', f1:6:3,' f2= ',f2:6:3);

Writeln('w1= ',w1:6:3);

Readln;

End.

2.3. ЗАДАЧИ ДИНАМИКИ, РЕШАЕМЫЕ В СРЕДЕ СИСТЕМЫ ПАСКАЛЬ

Теорема о движении центра масс системы материальных точек.

В случае сохранения скорости центра масс. Теорема о движении центра масс системы материальных точек. Зависимость между скоростью центра масс и скоростями точек материальной системы имеет вид:

Vс=(mk *Vk)/M, т.е.

xc=(∑mk*xk)/M, yc=(∑mk*yk)/M, zc=(∑mk*zk)/M (1*)

Здесь

Vс=xc*i+yc*j+zc*k

Зависимость между ускорением центра масс и с ускорениями точек материальной системы выражается соотношением

Wс=(∑mk*Wk)/M, т.е.

xc=(∑mk*xk)/M, yc=(∑mk*yk)/M, zc=(∑mk*zk)/M, (2*)

Здесь

Wс=xc*i+yc*j+zc*k

Напомним формулировку теоремы о движении центра масс: центр масс системы материальных точек движется как материальная точка, масса которой равна массе материальной системы и к которой приложены все внешние силы, действующие на систему: M*Wc=∑Fk.

Та же теорема, записанная в проекциях на оси декартовых координат имеет вид:

Mxc=∑Fkx, Myc=∑Fky, Mzc=∑Fkz, (3*)

Движение центра масс системы материальных точек зависит от внешних сил, приложенных к данной системе. Внутренние силы, которые отсутствуют в формулировке теоремы, непосредственно на движение центра инерции системы не влияют. Это обстоятельство значительно облегчает решение задач, так как внутренние силы системы большей частью бывают неизвестны.

Задачи динамики поступательного движения твердого тела решаются посредством теоремы о движении центра масс системы материальных точек.

Действительно, применив эту теорему, мы определим уравнение траектории, скорость и ускорение центра тяжести твердого тела. При поступательном движении твердого тела траектории всех точек одинаковы, а скорости и ускорения их соответственно равны.

С помощью теоремы о движении центра масс можно решать прямые и обратные задачи динамики. Последовательность решения задач:

  1. Изобразить на рисунке все внешние силы системы;

  2. Выбрать систему осей координат;

  3. Записать теорему о движении центра масс (3*) в проекциях на декартовы оси координат;

  4. Вычислить суммы проекций всех внешних сил системы на оси декартовых координат и подставить их в (3*);

  5. В зависимости от условия решать прямую, либо обратную задачи динамики.

В некоторых прямых задачах бывают заданы все внешние силы, корме одной, массы всех материальных точек системы и законы их движения. Тогда после выполнения первых четырех пунктов для вычисления левых частей уравнения (3*) надо воспользоваться вспомогательными формулами

Mxc=∑mkxk, Myc=∑mkyk, Mzc=∑mkzk (4*)

где mk – масса k-ой точки, а xk, yk, zk – уравнения ее движения, ввести эти результаты в (3*) и определить неизвестную силу.

В некоторых обратных задачах бывают заданы все внешние силы, массы всех точек системы и законы движения всех точек, кроме одной и требуется определить движение этой точки. Тогда, после выполнения первых четырех пунктов также следует воспользоваться формулами (4*), полученные результаты ввести в левые части уравнений (3*) и затем найти искомый закон движения точки.

Если в состав системы входят тела с непрерывным распределением масс, то следует записать координаты xk, yk, zk центров тяжести этих тел и затем воспользоваться формулами (4*).

Задача. Эпициклический механизм, расположенный в вертикальной плоскости, установлен на горизонтальной идеально гладкой плоскости и прикреплен к ней болтами K и L. Зубчатое колесо 1 радиуса r1 неподвижно. С2 – центр тяжести зубчатого колеса 2 весом Р2 и радиусом r2. С1 – центр тяжести станины А и колеса 1, общий вес которых равен Р1. Массой кривошипа С1С2, вращающегося с постоянной угловой скоростью w, пренебречь. В начальный момент кривошип занимал правое горизонтальное положение. Определить:

  1. нормальное давление механизма на плоскость,

  2. угловую скорость w вращения кривошипа, при которой механизм в условиях отсутствия болтов начнет подпрыгивать над горизонтальной плоскостью,

  3. наибольшее горизонтальное усилие, действующее на болты,

движение центра тяжести С1 станины механизма после среза болтов K и L.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее