47250 (Использование метода ветвей и границ при адаптации рабочей нагрузки к параметрам вычислительного процесса), страница 3

2016-07-30СтудИзба

Описание файла

Документ из архива "Использование метода ветвей и границ при адаптации рабочей нагрузки к параметрам вычислительного процесса", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "47250"

Текст 3 страницы из документа "47250"

Все комбинаторные методы решения задач целочисленного программирования основаны на той или иной идее направленного перебора вариантов, в результате которого путём перебора сокращенного числа допустимых решений отыскивается оптимальное решение. Перебор осуществляется с помощью определённого комплекса правил, которые позволяют исключать подмножества вариантов, не содержащие оптимальной точки.

В целом эти методы легче справляются с проблемой округлений, чем методы отсечения, как правило, не используют симплекс-процедуру линейного программирования и имеют более «простую арифметику» и более «сложную логику».

Основное содержание этих методов составляют динамическое программирование и совокупность способов решения, объединённых общим термином – метод «ветвей и границ».

Комплексный подход по схеме ветвлений объединяет целый ряд близких комбинаторных методов, как-то: метод ветвей и границ, метод последовательного конструирования, анализа и отсева вариантов и др. Общая идея метода крайне проста. Множество допустимых планов некоторым способом разбивается на подмножество. В свою очередь каждое из подмножеств по этому же или другому способу снова разбиваются на подмножества до тех пор, пока каждое подмножество не будет представлять собой точку в многомерном пространстве. В силу конечности наборов значений переменных дерево подмножеств (схема ветвления) конечно.

Построение схемы ветвления есть ни что иное, как формирование процедуры перебора. Перебор может осуществляться различными способами. Сечение исходной допустимой области G0 гиперплоскостью на части G11 и G12 с последующим разделением G11 на G21 и G22 представляет собой построение дерева ветвлений с соответствующими подмно-жествами, как это показано на рис. 4.

Возможность оценки образуемых подмножеств по наибольшему (наименьшему) значению для задач минимизации (максимизации) позволяет сократить перебор в силу того, что одно из подмножеств при выполнении определённых соотношений исключается и не нуждается в последующем анализе.

Понятно, что выбор оценок и схемы ветвления взаимосвязаны и трудно указать общие рекомендации по использованию на практике этого метода.

Схема ветвления иллюстрируется решением обобщённой задачи одномерного раскроя (пример 3) с конкретными числовыми данными.

Пример 3.

Имеются заготовки длиной a1=18, a2=16, a3=13. Разрезая их на части, но не склеивая, можно получать детали длинной b1=12, b2=10, b3=8, b4=6, b5=5, b6=4. Стоимость каждой детали известна и в условных единицах численно равна их длине. Перечисленные детали представляют собой «портфель заказов», который желательно обеспечить в первую очередь. В том случае, если это невозможно, максимизируется стоимость получаемых деталей из заданной номенклатуры. Если же портфель заказов обеспечивается, необходимо максимизировать стоимость дополнительной продукции.

Величину будем называть дефицитом. Отрицательность дефицита ещё не означает существование варианта раскроя, при положительном дефиците раскрой невозможен. Это свойство может быть использовано для указания перспективности варианта. Так, если заготовка a2 раскраивается на b2 и b5, то независимо от комбинаций остальных отрезков раскрой невыполним, поскольку для оставшихся отрезков дефицит положителен.

Первые этапы приводимой ниже схемы ветвления, использующей комбинаторные отношения подмножеств вариантов, показаны на рис. 5. На первом этапе формируются разбиения первой группы отрезков (заготовок) на вторую группу (деталей) независимо от того, какой именно отрезок первой группы разрезается. Количество ветвей первого этапа можно вычислить лишь по рекуррентным соотношениям. Смысл подмножества {1, 2, 3} заключается в том, что один из отрезков первой группы в результате раскроя даёт один отрезок второй группы, один из оставшихся отрезков первой группы раскраивается на два отрезка второй группы из числа оставшихся и, наконец, последний отрезок первой группы делится на три части, образуя три отрезка второй группы. На втором этапе формируются все перестановки (с учётом порядка) элементов первого этапа. Скажем, вариант {2, 1, 3} означает, что именно первый элемент первой группы a1 разрезается на две части и т.д.

Очередной этап ветвления образуется фиксацией отрезков второй группы при указанном на предыдущем этапе числе частей, на которое разрезается первый элемент. Другими словами, формируем сочетания по числу разделений первого элемента первого множества на число элементов второго множества. В дальнейшем фиксируем отрезки второй группы при втором элементе первой группы и, наконец, при оставшемся элементе первой группы получаем варианты раскроя, всего 447 вариантов. В подробно описанной схеме ветвления в отличие от часто применяемых ни на одном этапе не используется конкретный числовой материал. Рекомендуется построить для этого же примера иную схему ветвления, начиная с третьего этапа, по следующему признаку: отрезки второй группы фиксируются при элементе первой группы, разрезаемом на меньшее число частей. Затем надо сравнить схемы. Нетрудно убедиться, что на каждом этапе ветвления осуществляется по регулярной процедуре, что позволяет запоминать лишь один вариант. Сравнение дефицитов предыдущего и последующего вариантов позволяет выделить перспективную ветвь. Окончательный результат имеет вид:

{(b2, b3), (b4, b5, b6), (b1)};

{(b1, b4), (b2, b5), (b3, b6)};

{(b1, b4), (b2, b6), (b3, b5)};

{(b1, b5), (b2, b4), (b3, b6)};

{(b2, b3), (b1, b6), (b4, b5)};

{(b1, b6), (b2, b4), (b3, b5)};

{(b2, b4), (b1, b6), (b3, b5)}.

Формально задачу можно было бы свести к общему виду линейной задачи целочисленного программирования, но такое сведение приведёт к значительному увеличению количества переменных и другим трудностям. Матрица коэффициентов при этом приобретает квазиблочный вид с неплотным заполнением её отличными от нуля элементами. Как правило, задачи многоиндексные с большим числом условий и сложной упорядоченностью рекомендуется решать по схеме ветвлений, используя специфику условий и ограничений.

Для задач дискретного типа этот метод получил наибольшее распространение в силу простоты и доступности самого метода и, кроме того, наиболее естественной формы описания систем условий и ограничений, являющихся, как правило, отправным пунктом построения дерева ветвления. По существу большинство оригинальных алгоритмов (Балаша-Фора-Мальгранжа, Черенина, Джефферсона, Хиллиера и др.) являются модификациями метода ветвей и границ с учётом специфики условий задачи.

4. Построение оптимальной последовательности заданий на обработку в узле вычислительной системы

4.1 Формализация вычислительного процесса и рабочей нагрузки

Узел вычислительной системы представляется в виде совокупности оборудования и программных компонент. Оборудование включает в себя: центральный процессор (CPU), внешнюю память (HDD), устройства ввода-вывода информации (IOI). Программными компонентами в вычислительной системе являются операционная система (OS) и множество задач, реализуемых по запросам рабочей нагрузки. Для моделирования рабочей нагрузки на узлах вычислительной системы необходимо провести декомпозицию каждого задания пакета рабочей нагрузки на отдельные программные модули (ПМj). Количество и типы программных модулей зависят от имеющегося состава оборудования и программных средств узла вычислительной системы. При этом можно выделить следующие типы программных модулей: ввода информации; обработки информации; реализация вычислений на центральном процессоре; вывода информации. Модуль обработки информации обращается к базе данных вычислительной системы.

В свою очередь реализация обращения к базе данных также имеет определённую структуру, характеризующуюся графом GBD связей модулей в базе данных (MDBk). Предполагается, что характер следования друг за другом модулей базы данных при выполнении запросов в модуле обработки информации также является полумарковским.

Поскольку реализация задания i из рабочей нагрузки характеризуется полумарковским процессом, то для определения характера этого процесса необходимо задать следующие характеристики:

  • матрицу вероятности переходов i-го задания от одного (j-го) программного модуля к другому (l-му) программному модулю МРi=||Рijl||;

  • матрицу, элементами которой являются функции распределения времени обработки задачи i в i-ом программном модуле при условии получения им управления от j-го программного модуля (MFi=||Fi(tjl)||);

  • тип j-го программного модуля, с которого начинается полумарковский процесс задания i (jOi) и количество j-х программных модулей, реализуемых цепочкой j-х программных модулей (nOi).

Аналогичным способом определяются характеристики полумарковского процесса реализации обмена. В качестве исходной информации задаются:

  • матрица вероятностей следования друг за другом MDBjk (Mqj=||qjks||);

  • матрица, элементами которой являются функции распределения объёмов информации при выполнении MDBjs при условии того, что перед этим использовался модуль MDBjk (МФj=||Fj(Vobjs)||);

  • тип MDBjk, с которого начинается обращение к базе данных (kO), и количество MDBjk, реализуемое при данном обращении j-го программного модуля к базе данных (mOj).

4.2 Особенности организации имитационного эксперимента

Динамика выполнения задач пользователей на оборудовании узла вычислительной системы отражается последовательностью j-х программных модулей и имеет вероятностный характер. Каждый j-й программный модуль узла захватывает ресурс центрального процессора, часть ресурса оперативной памяти (Voni) и обращается к внешней памяти (HDD). Ресурс центрального процессора всегда выделяется j-м программным модулем полностью. Распределение ресурса центрального процессора организует операционная система. Ресурс центрального процессора распределяется по всем j-м программным модулям и для его выделения на определённый квант времени (Δt) используется система управляющих сигналов, формируемых по заявкам, поступающим от j-х программных модулей. Внешняя память моделируется как место размещения базы данных, и поэтому выделение ресурса внешней памяти для j-х программных модулей осуществляется до завершения выполнения задания. Функционирование устройств информации ввода вывода и модуля вывода информации моделируются как обычные устройства массового обслуживания с дисциплиной FIFO.

Время, затраченное на выполнение задания i, обозначим через Тжi. Причём, в Тжi включается сумма времени обслуживания задачи i на всех устройствах вычислительной системы, а также сумма времён издержек выполнения запросов заданий из-за занятости требуемых ресурсов другими задачами.

Целью моделирования вычислительного процесса в вычислительных системах является минимизация за счёт оптимизации порядка входа заданий рабочей нагрузки в вычислительной системе при неизменном составе ресурсов системы. Для получения оптимальной последовательности задач рабочей нагрузки необходимо знать: перечисленные ранее характеристики полумарковского представления процесса решения задач; ресурсные характеристики вычислительной системы; возможные реакции вычислительной системы на задания рабочей нагрузки с целью подсчёта времени обработки i-го задания в вычислительной системе.

Предполагается, что первые два условия задаются до постановки имитационного эксперимента. Поэтому ниже рассматриваются особенности моделирования вариантов обработки заданий в вычислительной системе.

Поскольку каждое задание использует ресурс вычислительной системы вероятностным образом, то для расчёта наиболее вероятного времени обработки узлом вычислительной системы i-го задания Tжi, а также коэффициентов загрузки центрального процессора (ηCPU) и внешней памяти (ηHDD) используется метод Монте-Карло. Количество реализаций (N) i-го задания i=1,…, n в вычислительной системе определяется из точности моделирования ( ) для получения оценок вектора (Тжi, ηCPUi, ηHDDi). По окончании N реализаций имитационного эксперимента всех n заданий рабочей нагрузки получается матрица для каждого отклика (Тжi, ηCPUi, ηHDDi). Методика расчёта компонент этого вектора реализуется следующей последовательностью шагов.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее