10366 (Постсинаптическая трансформация сигнала)

2016-07-30СтудИзба

Описание файла

Документ из архива "Постсинаптическая трансформация сигнала", который расположен в категории "". Всё это находится в предмете "биология" из 2 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "биология" в общих файлах.

Онлайн просмотр документа "10366"

Текст из документа "10366"

Постсинаптическая трансформация сигнала

Введение

Активность нервных окончаний регулируется двумя экзогенными факторами – изменением мембранного потенциала и прямым взаимодействием медиаторов нервных импульсов с рецепторами. В результате этих событий меняется цитоплазматический уровень по меньшей мере вторичных посредников – Са+, цАМФ, цГМФ, инозитолтрифосфата и диацилглицерина, что приводит к активации соответствующих пулов протеинкиназ: цАМФ-зависимых протеинкиназ; цГМФ-зависимых протеинкиназ; Са-кальмодулин и Са-фосфолипид-зависимых протеинкиназ. Активация протеинкиназ обусловливает фосфорилирование регуляторных белков-мишеней в клетках нервной системы и тем самым модулирует функциональную активность этих клеток.

Определяющий вклад в проблему внутриклеточной регуляции был сделан в 50–60-е годы Э. Сазерлендом, сформулировавшим представление о роли циклических нуклеотидов как вторичных посредников, накапливающихся в клетке в ответ на нейромедиаторный или гормональный стимул и осуществляющих связь между рецепторами и исполнительными системами. В результате дальнейшего развития этих исследований оказалось, что циклический аденозинмонофосфат регулирует обмен белков, углеводов, липидов и нуклеиновых кислот, влияет на проницаемость мембран, электрическую, сократительную и секреторную функции клеток, дифференцировку и пролиферацию. Установлена роль фосфорилирования белков как основного пути действия этого нуклеотила на клетки животных. Найдена связь между содержанием циклических нуклеотидов и характером протекания некоторых патологических процессов в тканях. Описано участие цАМФ и цГМФ в проявлении действия многих лекарственных препаратов на организм. Спустя лишь 10–15 лет после открытия, сделанного Э. Сазерлендом, представления о роли и механизме действия циклических нуклеотидов оказались неотделимыми от современной биохимии, физиологии и медицины. Задача настоящей работы состоит в сравнительно детальном рассмотрении постсинаптических механизмов.

1. цАМФ-Зависимое фосфорилирование

1.1 Аденилатциклаза, ее активация

Синтез в клетке цАМФ из АТФ осуществляет аденилатциклаза. Фермент обнаружен практически во всех тканях млекопитающих. Максимальная активность аденилатциклазы выявлена в мозге, далее в порядке убывания активности фермента ткани можно распределить следующим образом: селезенка, скелетные мышцы, сердце, легкие, почка, печень, жировая ткань. Аденилатциклаза локализована почти исключительно в плазматических мембранах, хотя есть сообщения о присутствии фермента в митохондриальной и микросомальной фракциях.

Аденилатциклаза представляет собой мультимолекулярный комплекс, состоящий из рецепторного и каталитического компонентов. Ответ клетки на действие гормона или биологически активного вещества зависит от концентрации рецепторов на поверхности мембраны и степени сопряжения рецепторов с аденилатциклазой. В последнем случае в роли сопрягающего компонента выступают G-белки, обладающие как ГТФ-связывающей, так и ГТФ-гидролизующей активностью.

Рецептия с участием G-белков отличается от других известных систем трансформации внеклеточного сигнала. Все эти системы включают рецептор – дискриминатор сигнала, с высокой специфичностью и чувствительностью "снимающий" внеклеточный сигнал с наружной мембраны. Рецептор может находиться внутри клетки – в том случае, если эффекторы являются липофильными молекулами, легко проникающими через мембрану. Рецепторы для водорастворимых эффекторов встроены в наружную мембрану: эти рецепторы могут быть ферментами; другой тип мембрановстроенных рецепторов сопряжен с ионными каналами. Наконец, рецепторы, которым не присущи свойства ни канала, ни фермента, сопряжены с ферментами-исполнителями с помощью G-белков.

Регуляцию аденилатциклазной системы с участием G-белков можно представить следующим образом. В системе есть два белка, состоящих из субъединиц а, р и у и названных Gs и Gj. р – у-субъединицы в отличие от а-субъединиц практически идентичны во всех изученных G-белках. а-субъединица содержит участок связывания с гуаниловыми нуклеотидами и обладает ГТФазной активностью. Каждый из G-белков связан со своим рецептором. При образовании комплекса агонистрецептор происходит активация G-белка путем замены в нуклеотидсвязывающем центре ГДФ на ГТФ. При этом изменяется конформация а-субъединицы, что обусловливает ее диссоциацию от комплекса ру. Для диссоциации необходим Mg+. Активированная а-субъединица G| ингибирует активность аденилатциклазы, в то время как активированная Gs – стимулирует ее.

Очевидно, почти идентичные по структуре комплексы Ру могут ингибировать аденилатциклазу непрямым способом, а именно, путем связывания с ct-субъединицей Gs, таким образом "выключая" ее способность стимулировать фермент. Действительно, во многих исследованных тканях, в том числе в нервной, концентрация Gj значительно выше, чем Gs. Следовательно, возможно высвобождение достаточного количества комплекса Ру из Gi для соединения со всеми а-субъединицами Gs. Сопрягающий эффект G-белков прекращается медленным гидролизом связанного ГТФ до ГДФ. G-белки могут быть снова активированы при связывании рецептора с "сигнальной" молекулой.

Установлено, что рецепторы многих гормонов собраны в группы, кластеры и малоподвижны в мембране. Поэтому при активации кластера, состоящего из рецепторов одного типа, происходит стимулирование аденилатциклазы и увеличение уровня цАМФ в ограниченном районе клетки. Это ведет к повышению протеинкиназной активности и фосфорилированию субстратов только в данной зоне клетки, в данном компартменте. Компартментализация цАМФ и А-киназы установлена во многих типах клеток: например, стимуляция сердца как с помощью катехоламинов, так и простагландина Ej приводит к увеличению уровня цАМФ и активации протеинкиназы А. Однако катехоламины и простагландин Ej оказывают различное влияние на фосфорилирование фосфорилазы гликогена. Видимо, рецепторы катехоламинов и простагландина и соответствующие постсинаптические системы расположены в разных компартментах клетки.

1.2 Протеинкиназа

Через 10 лет после открытия Сазерлендом цАМФ была обнаружена цАМФ-зависимая протеинкиназа, значительно повышающая скорость фосфорилирования субстратов в присутствии цАМФ. Реакция протеинфосфорилирования выглядит следующим образом:

Гидроксильная группа белка, акцептирующая терминальный фосфат АТФ, почти всегда принадлежит серину, реже треонину и тирозину. Фосфосериновые остатки в белках существенно ионизированы при физиологических значениях рН, поэтому фосфорилирование или дефосфорилирование серина резко меняет заряд белковых молекул. После открытия протеинкиназы А стало ясно, что реакции фосфорилирования – дефосфорилирования опосредуют действие многих гормонов и нейромедиаторов, которые через р-адренергическую рецептию активируют аденилатциклазу и приводят к повышению внутриклеточного уровня цАМФ.

Протеинкиназа А обнаружена во всех нормальных клетках млекопитающих, а также в некоторых типах клеток немлекопитающих. Высоким уровнем протеинкиназы А отличается мозг, где фермент распределен равномерно по всем отделам. Для проявления активности фермента необходимы ионы магния. Так, из легких кролика выделен стимулирующий модулятор протеинкиназы, связывающий магний и названный "магмодулином". Протеинкиназа А – тетрамер, построенный из двух различных субъединиц: регуляторной, связывающей цАМФ, и каталитической, осуществляющей фосфотрансферазную реакцию; будучи соединены вместе, они образуют неактивный комплекс. При активации происходит связывание цАМФ Р-субъединицей холофермента, после чего возможна диссоциация Р от К-субъединицы. Свободная К-рубъединица способна катализировать фосфорилирование различных клеточных белков:

Таким образом, в активном состоянии протеинкиназа А представляет димер Р-субъединиц, связанный с 4 молями цАМФ, и 2 свободные К-субъединицы.

Скорость обратной реакции обусловлена не только спонтанной диссоциацией комплексов Р – цАМФ, но и концентрацией К-субъединиц, так как последние высвобождают связанный цАМФ путем рекомбинации с комплексом Р – цАМФ. Этот своеобразный "ретрокооперативный" эффект К-субъединицы, названный так Свилленсом и Дюмоном, ведет к временному увеличению концентрации цАМФ, требуемой для активации протеинкиназы. В период стимуляции системы уровень К-субъединиц резко падает.

Существование эквивалентных количеств каталитических и регуляторных субъединиц цАМФ-зависимой протеинкиназы во многих тканях привело к представлению о том, что единственная функция регуляторной субъединицы – контроль протеинкиназной активности. Однако регуляторная субъединица может существовать отдельно от каталитической в некоторых типах клеток, например в клетках нейробластомы. Это указывает на возможность проявления биологического действия регуляторной субъединицы независимо от каталитической. Далее будет рассмотрена такая возможность на примере изменения проницаемости мембран нейронов для Na+ и К в присутствии Р-субъединицы. Надо также иметь в виду, что цАМФ-связывающие белки, не ассоциированные с протеинкиназой, могут регулировать активность последней путем модулирования уровня свободного циклического нуклеотида, способного присоединяться к протеинкиназе.

Отметим далее, что свободные Р-субъединицы ингибируют фосфодиэстеразу цАМФ, что может приводить к увеличению уровня этого нуклеотида в клетке. Установлено также, что свободные Р-субъединицы протеинкиназы типа А в отличие от холофермента киназы и ее К-субъединицы ингибируют фосфопротеинфосфатазы нескольких типов. Ингибирование обусловлено снижением скорости катализа без изменения сродства к энзиму. Очевидна физиологическая значимость такого ингибирования, так как в этом случае диссоциация А-киназы может способствовать не только стимулированию фосфорилирующей активности, но и ингибированию дефосфорилирования субстратов.

Протеинкиназа А существует в форме двух изоферментов, относительное количество которых варьирует в разных тканях.

Изоферменты были названы киназами I и II. Они имеют различные скорости диссоциации в присутствии гистона и растворов NaCl и реассоциации после удаления цАМФ. Так, киназа I типа быстро диссоциирует в присутствии гистона или 0,5 М NaCl и медленно реассоциирует после удаления цАМФ; напротив, киназа II типа медленно диссоциирует в присутствии указанных агентов и быстро реассоциирует после удаления цАМФ.

Каталитические субъединицы киназ I и II типа имеют молекулярную массу 40 кД и минимальные различия в аминокислотном составе. Напротив, регуляторные субъединицы киназ I и II типа значительно отличаются по первичной структуре. Вероятно, субъединица Р I типа – 49 кД – является протеолитическим фрагментом Р II типа с молекулярной массой 55 кД. Один из сериновых остатков Р-субъединицы II типа фосфорилируется каталитической субъединицей цАМФ-зависимой протеинкиназы. Очищенная же Р-субъединица I типа не фосфорилируется каталитической субъединицей цАМФ-зависимой протеинкиназы. Другим отличием киназы I типа от II типа является то, что только первый фермент связывает Mg-АТФ с высоким сродством.

цАМФ-зависимые протеинкиназы локализованы в основном в цитозольной фракции клеток. Однако в мозге, например, значительная часть киназы II типа является мембранно-связанной. Очевидно, субклеточная локализация и соотношение киназ I и II типа могут обусловливать специфику действия цАМФ в клетке. Отношение киназы I типа к киназе II типа варьирует в различных органах и в различных фазах клеточного цикла.

При исследовании локализации фосфорилирующих систем в ЦНС установлено, что цАМФ-зависимая система избирательно сконцентрирована в нейронах, особенно в дендритах, а не в глии. Мозг крысы содержит как I, так и и II форму протеинкиназы А при соотношении этих форм 1:4 соответственно. Высокое содержание А-киназы II типа по сравнению с ферментом I типа вообще характерно для нервной ткани. Недавно установлена гетерогенность Р-субъединиц А-киназы II типа. При этом в мозге выявлена собственная, специфичная Р Н-субъединица, отличная по иммунохимическим свойствам от Р-субъединиц II типа в других тканях. Р II мозга отличается от Р II – мышц по характеру взаимодействия с К-субъединицей, а также по электрофоретической подвижности аутофосфорилированных форм. Показано, что фракция Р-субъединиц II типа мозга взаимодействует с Са+ и кальмодулином. Необычные свойства Р Н-субъединицы мозга могут являться следствием адаптации нервных клеток к специфической функции передачи и хранения информации.

Ассоциации А-киназы II типа мозга с мембранной фракцией клеток обусловлены только Р-субъединицей. цАМФ при диссоциации холофермента высвобождает из мембранно-связанного состояния только К-субъединицу; таким образом, компартментализация К-субъединицы изменяется при активации А-киназы. Молекула этой субъединицы гидрофильна, поэтому диссоциация мембранно-связанной А-киназы II типа приводит к транслокации каталитической субъединицы в цитоплазму и далее в ядро. Предполагается, что такая транслокация может обусловливать цАМФ-зависимое изменение экспрессии генов в нейронах, наибольшая концентрация Р-субъединиц А-киназы II типа обнаружена в пре- и постсинаптической мембранах, что свидетельствует о важной роли этой киназы в синаптической передаче.

Различия между регуляторными субъединицами А-киназы II типа нервной и других тканей проявляются также и во взаимодействии этих субъединиц с субстратами киназы. Так, для Р-субъединицы II типа из мозга характерно тесное взаимодействие с МАР-2 – нейроспецифическим белком, локализованным в отростках нейронов, кальцинейрином и другими белками. Такое взаимодействие Р II с субстратами А-киназы может приводить, с одной стороны, к локализации А-киназы II типа около специфических субстратов и, соответственно, в определенных внутриклеточных компартментах, что, очевидно, имеет важное физиологическое значение. С другой стороны, кроме связывания К-субъединицы Р-субъединица II типа нервной ткани может участвовать в регуляции функционирования других белков.

Регуляция активности протеинкиназы А осуществляется несколькими путями. Так, во многих тканях, в том числе и нервной, обнаружен низкомолекулярный термостабильный ингибитор киназы. Ингибитор связывается со свободной К-субъединицей и угнетает ее ферментативную активность. Вероятно, физиологическая роль ингибитора состоит в блокаде фосфорилирующей активности при "базаяном", т.е. нестимулируемом уровне цАМФ. В мозге наблюдается изменение концентрации ингибитора в ответ на некоторые гормональные сигналы, что может иметь определенное значение в долговременной регуляции активности А-киназы. Регуляция активности киназы II типа осуществляется также аутофосфорилированием ее Р-субъединицы; это ведет к повышению активности фермента, что обусловлено уменьшенной скоростью реассоциации фосфорилированной Р со свободной К-субъединицей. Киназа I типа также может быть фосфорилирована, но фосфорилирование ее Р-субъединицы осуществляется цГМФ-зависимой протеинкиназой. Установлено ау-тофосфорилирование К-субъединицы, однако функциональное значение этого процесса неизвестно.

Возможно, что фосфорилирование с помощью свободной К-субъединицы А-киназы и соответствующая активация фосфопротеинфосфатазного ингибитора I, приводящая к снижению активности фосфопротеинфосфатазы I, уменьшает дефосфорилирование комплекса Р-цАЛ1Ф и, следовательно, способствует диссоциации киназы II типа по принципу положительной обратной связи. Такое событие наряду с компартментализацией цАМФ в клетке может способствовать эффективной активации цАМФ-зависимой киназы при незначительном увеличении внутриклеточного уровня цАМФ.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее