151120 (Эксимерные лазеры), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Эксимерные лазеры", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151120"

Текст 2 страницы из документа "151120"

Во всех эксимерных системах типа "инертный газ + элемент VI группы", за исключением случая XeO, переходы являются в основном свободно-свободными лишь с небольшим вкладом связанно-свободных эксимерных переходов.

В случае XeO характер взаимодействия следующий. Благодаря эффектам перекрывания взаимодействие между атомами с заполненной и незаполненной оболочками является главным образом отталкивательным. Силы притяжения возникают по двум причинам: во-первых, за счет дисперсионного и электростатического взаимодействия и, во-вторых, за счет переноса заряда, возникающего вследствие взаимодействия ионных и ковалентных конфигураций. Роль переноса заряда возрастает, если потенциал ионизации инертного газа уменьшается.

Излучательные переходы между синглетными валентными состояниями происходят исключительно вследствие столкновений. Взаимодействие с переносом заряда является преобладающим в переходах на более коротких расстояниях между атомами. С увеличением межатомных расстояний более важную роль начинают играть силы электростатического взаимодействия.

Что касается методов накачки, то кислород (или другие доноры элементов VI группы) в смеси с инертными газами целесообразно подвергнуть действию электронного пучка, чтобы воспользоваться передачей энергии за счет столкновений.

1.1.3 Лазеры на эксимерных молекулах чистых инертных газов

Обычно эксимерные лазеры на инертных газах работают при относительно высоких давлениях (более двух атмосфер), а источником возбуждения являются пучки электронов сравнительно высокой энергии и плотности (~1 МэВ, сотни А·см-2). При таких условиях концентрация электронов в образующейся плазме довольно высока (более 1014 см-3).

Механизм селективной накачки эксимерных уровней можно упрощенно рассматривать как последовательность столкновений с обменом энергией. Электроны высокой энергии ионизируют или возбуждают основной газ в результате реакций типа e - + Ar → Ar+ + 2e-; e - + Ar → Ar* + e. Все примеры, приводимые для аргона, справедливы также для ксенона и криптона. В зависимости от используемого газа вторичные электроны имеют среднюю энергию в диапазоне 5 - 7 эВ.

При высоких давлениях, характерных для рассматриваемых лазеров, трехчастичная ассоциация по схеме Ar+ + 2Ar → Ar2+ + Ar протекает достаточно быстро. Затем в процессе диссоциации образуются нейтральные возбужденные диссоциирующие молекулы e - + Ar2+ → Ar2 → Ar** + Ar. Процессы трехчастичной ассоциации, имеющие большую скорость при высоких давлениях, приводят затем к образованию связанных молекулярных уровней Ar** + 2Ar → Ar2* + Ar. Самые низкие возбужденные состояния молекул не пересекаются отталкивательными кривыми, и поэтому молекулы в таких состояниях не диссоциируют. При высоких давлениях процессы, описанные выше, протекают быстрее радиационного распада, так что эта цепочка процессов позволяет получить высокую плотность инверсии населенностей.

1.1.4 Лазеры на двухатомных галогенах

Между лазерами на гомоядерных молекулах галогенов и лазерами на эксимерных соединениях атома инертного газа и атома галогена имеется значительное сходство. Однако, они относятся к разным типам устройств.

Лазеры на двухатомных галогенах, так же как лазеры на моногалогенидах инертных газов и лазеры на галогенидах ртути, генерируют на переходах между верхним состоянием ионного типа и нижним ковалентным состоянием. Таким образом, и характеристики этих лазеров должны быть аналогичными. Нижние состояния моногалогенидов инертных газов (за исключением XeF) являются отталкивательными, что облегчает получение инверсии населенностей. Однако гомоядерные молекулы галогенов имеют тенденцию к переходам на высокие колебательные уровни связанных нижних электронных состояний. Поэтому в них инверсия определяется быстрой колебательной и электронной релаксацией.

Основные кинетические процессы, протекающие в лазерах на галогенидах, представлены на рисунке 3.

Лазерная накачка электронным пучком или разрядом способна быстро и эффективно создавать первичные состояния во всем объеме газа. В реакциях с передачей энергии от примеси галогену образуются возбужденные атомы галогенов X*. Возможной реакцией, в которой создаются другие первичные состояния, является реакция с одновременным образованием отрицательных ионов X - (за счет диссоциативного прилипания электронов низкой энергии) и галогенсодержащих положительных ионов X+ или RX+. Реакции ион-ионной нейтрализации (процесс 1) могут затем произвести возбужденные состояния гомоядерных галогенов. Возбужденные нейтральные атомы могут образовывать молекулы галогенов путем гарпунных реакций (процесс 2).

Рисунок 3. Схема основных кинетических процессов, связанных с возникновением генерации в двухатомных галогенах

При высоком давлении газа в рабочем объеме быстрая электронная и колебательная релаксация приводит к заселению наинизших уровней ионных термов. Чтобы эти процессы оказались эффективными, молекула не должна иметь отталкивательных потенциальных кривых, соответствующих атомам в основных состояниях и пересекающих потенциальные кривые связанных верхних состояний. Дезактивация верхних уровней происходит за счет излучения (процесс 4) и тушения (процесс 5), первый из которых является желательным, а второй - нежелательным процессом. Из спектроскопических измерений следует, что излучательные процессы заканчиваются на высоких колебательных уровнях нижней потенциальной кривой, которая не представляет собой основное состояние. Последующие столкновения в газе способствуют быстрой колебательной релаксации или даже диссоциации нижнего уровня, поддерживая таким образом инверсию населенностей. К заселению верхнего лазерного уровня могут приводить несколько различных процессов. Нижний уровень не обязательно является самым низким энергетическим состоянием молекулы.

На рисунке 4 приведены спектры испускания галогенов.

Рисунок 4. Спектры испускания галогенов

В случае йода спектр был снят за 1, 3 и 5 импульсов, а в случае брома - за 1, 5 и 10 импульсов. Длинноволновая часть импульсов характеризуется большим количеством подавленных импульсов.

1.1.5 Лазеры на парах металлов

Эксимерные молекулы с атомами металлов характеризуются несколькими важными свойствами. Во-первых, их эксимерные полосы располагаются на крыльях линий паров металлов; следовательно, наиболее интересные полосы, соответствующие переходам из основного состояния в первое возбужденное, обычно находятся в видимой или ближних УФ и ИК областях спектра. Во-вторых, многие из возбужденных состояний AB*, определяющие эти полосы, являются слабосвязанными. Для того, чтобы иметь соответствующее давление паров металлов, требуемое для получения достаточного коэффициента усиления, необходимы повышенные температуры (за исключением случая Hg). При этом возникает сложная техническая проблема, связанная с химическим взаимодействием с материалами окон и прокладок. И, наконец, энергия атомов металлов в наинизшем возбужденном состоянии, как правило, составляет менее половины энергии ионизации. Это свойство имеет важные следствия для электронных столкновительных сечений, которыми определяется КПД потенциальных электроионизационных и электроразрядных лазеров высокой мощности.

Наличие слабой связи у многих эксимеров с участием атомов металлов сильно отражается на их оптических свойствах, когда они используются как лазерная среда. Это приводит к низкому показателю усиления в расчете на возбужденный атом металла; однородному уширению эксимерной полосы; быстрым переходам между возбужденными атомами A* и соответствующими эксимерными молекулами AB*; а также к необходимости повышать плотность инертного газа и к довольно строгим требованиям, накладываемым на степень возбуждения атомов металлов. Также наличие слабой связи позволяет получать (благодаря низкому показателю усиления и однородному уширению) высокие уровни мощности, а также большие энергии в импульсе, чему способствует отвод тепла инертным газом, находящимся при высоком давлении.

1.1.6 Охлаждение, вентиляция и очистка рабочего газа

В эксимерных лазерах, работающих при, примерно, 2% -ном соотношении входной электрической и выходной оптической энергий, избыток энергии должен эффективно выводиться как избыток тепла. Как во всех охлаждающих системах газовых лазеров, плохой теплообмен между рабочим газом и теплообменником становится причиной появления проблем. Обычно активная среда содержится в алюминиевом резервуаре определенного объема под давлением. Встроенный вентилятор создает мощную циркуляцию рабочего газа, что позволяет сохранять активную среду хорошо перемешанной и обновляемой в области генерации и получать высокую скорость прохождения газа через фильтр и теплообменник. Последний, обычно использующий в качестве охлаждающей среды воду, для обеспечения высокой температурной стабильности (особенно в режиме частых повторений) должен иметь определенную зону контакта со средой. На рисунке 5 схематично представлен резонатор эксимерного лазера.

Рисунок 5. Резонатор эксимерного лазера.

На рисунке 6 приведен пример кюветы с коронной предионизацией (см. ниже) и системой охлаждения.

Рисунок 6: A - коронный разряд, B - электроды, C - кювета, D - вентилятор, E - электростатический фильтр, F - теплообменник

1.2 Накачка

Для накачки лазеров на основе эксимеров имеется несколько методов, общим требованием к которым является обеспечение большого удельного энерговклада в активную рабочую среду. К числу этих методов относятся: возбуждение пучков высокоэнергетических электронов (электронное возбуждение), возбуждение электрическим разрядом, поддерживаемым электронным пучком (электроразрядные лазеры с электронной предионизацией), возбуждение быстрым поперечным разрядом, оптическое возбуждение (излучение взрывающихся проволочек).

1.2.1 Накачка электронным пучком

При электронном возбуждении пучок высокоэнергетических электронов обладает энергией от 300 кэВ до 1 МэВ и выше. Формирование электронного пучка производится отдельной электронной пушкой, а сам пучок вводится в активный объем лазера, заполненный газовой смесью, через тонкий слой фольги, разделяющий вакуумный объем электронной пушки и рабочий объем лазера, давление в котором обычно превышает атмосферное. Длительность импульсов возбуждения обычно составляет несколько десятков наносекунд, а плотность тока электронного пучка от нескольких десятков до нескольких сотен ампер на квадратный сантиметр. При данном методе возбуждения удалось обеспечить генерацию на большинстве из перечисленных выше активных сред: KrF*, ArF*, XeCl*, XeF*.

Рисунок 7.Накачка электронным пучком.

Наилучшие результаты достигнуты на фторидах криптона и аргона (KrF и ArF), удельный энергосъем при использовании которых достигает 3 - 30 Дж/л, а рабочий объем возбуждения несколько десятков литров. Энергия импульса излучения при объеме рабочей среды 36 л равна 100 Дж при КПД 1,5% (КПД это отношение энергии излучения к поглощенной энергии электронного пучка). Для оценки полного КПД необходимо учесть КПД преобразования энергии первичного источника питания в энергию электронного возбуждающего пучка, в оптимальных условиях достигающих 50%.

Создана лазерная установка с рабочим объемом 40 см3 (камера длиной 20 см и диаметром 2 см), на которой получены импульсы излучения с энергией 7 мДж. Возбуждение осуществляется электронным пучком 250 - 300 кэВ и током до 5 кА. В качестве рабочей лазерной среды используется смесь газов Ar, Xe, SF6 в соотношении 75: 1: 0,1 при давлении 0,71 МПа.

Способ возбуждения электронным пучком имеет ряд достоинств, к которым следует отнести: возможность возбуждения высоколежащих уровней атомов (т.е. получения излучения в УФ и видимом диапазонах длин волн); возможность возбуждения газов при высоком давлении и больших объемах, что обеспечивает поучение больших энергий излучения; возможность работы при частотах следования импульсов до 100 и более Гц и, следовательно, получение больших средних мощностей излучения. Но этому способу возбуждения присущи и некоторые недостатки, к числу которых относятся трудности введения энергии электронного пучка в газ с достаточно равномерным ее распределением по объему, сложность электронных ускорителей, существенно повышающих стоимость лазера.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее