126012 (Расчет кожухотрубного теплообменника)

2016-07-30СтудИзба

Описание файла

Документ из архива "Расчет кожухотрубного теплообменника", который расположен в категории "". Всё это находится в предмете "промышленность, производство" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "промышленность, производство" в общих файлах.

Онлайн просмотр документа "126012"

Текст из документа "126012"

Методические указания по курсовому проектированию

Расчет кожухотрубного теплообменника

  1. Кожухотрубные теплообменники

Общие сведения

Кожухотрубные теплообменники наиболее широко распространены в пищевых производствах. Это объясняется следующими их достоинствами – компактностью, невысоким расходом металла, легкостью очистки труб изнутри, надежностью в работе.

Конструкция кожухотрубного теплообменника заключается в следующем. В наружную трубу большого диаметра – кожух 1 (рис. 1) помещен пучок трубок 3. Концы трубок 3 развальцованы в трубных решетках 2, чем обеспечивается герметичность межтрубного пространства. Сверху и снизу трубные решетки закрыты крышками 5, которые с помощью прокладок 6 и фланцев 7 герметично соединяются с решеткой и корпусом. При большой высоте аппараты могут устанавливаться на межэтажном перекрытии с помощью опорных лап 9. Первый теплоноситель проходит по трубам, а второй подается в межтрубное пространство.

Отметим, что в связи с большим объемом межтрубного пространства эта конструкция как бы предназначена для подачи туда греющего пара. При этом пар подводится в верхней части аппарата через патрубок 8, а конденсат отводится из нижнего сечения через патрубок 10, расположенный возможно ближе к трубной решетке. По трубам целесообразно направлять жидкость, так как конструкция позволяет обеспечить необходимую скорость движения жидкого теплоносителя, пропуская его по части труб, объединенных в одном пучке. По одному пучку труб жидкость совершает один ход, а по другому – второй ход и т.д., реализуя многоходовой кожухотрубный аппарат. На рис. 2 изображен двухходовой теплообменник, в корпусе 1 которого размещены трубки 2.

В правой крышке аппарата имеются патрубки 5 и 7 для входа и выхода жидкого теплоносителя. Внутреннее пространство крышки разделено перегородкой 6 на две секции. Пар поступает через патрубок 4, а конденсат выходит через патрубок 8. Для улучшения условий омывания внешней поверхности трубок паром межтрубное пространство разделено вертикальными перегородками 3. Увеличение числа ходов в аппарате ведет к уменьшению живого сечения каждого хода и, следовательно, к возрастанию скорости движения жидкости в трубах. Это, в свою очередь, приводит к повышению коэффициентов теплоотдачи и теплопередачи. Однако увеличение числа ходов ведет к возрастанию гидравлических сопротивлений. На практике число ходов в аппаратах, применяемых в пищевой промышленности, не превышает 20. Кожухотрубные теплообменники характеризуются компактностью. В 1м3 объема аппарата поверхность теплопередачи может достигать 200 м2.

В рассмотренных кожухотрубчатых теплообменниках трубы жестко закреплены в трубной решетке. Вследствие разности температур между кожухом и трубами в них возникают температурные напряжения, которые могут привести к разрушению аппарата. Теплообменники с жестким креплением труб в трубной решетке надежно работают при разностях температур между корпусом и трубами 25…30 0С. Если эта разность превышает указанные пределы, применяют теплообменники с различными компенсаторами температурных удлинений.

На рис. 3.а и б показаны теплообменники с «плавающей» головкой, в которых одна из трубных решеток не соединена с кожухом и может свободно перемещаться вдоль оси при температурных удлинениях.

На рис. 3.в показан теплообменник с линзовым компенсатором на корпусе. Температурные деформации компенсируются осевым сжатием или расширением этого компенсатора. Такие теплообменники применяют при температурных деформациях, не превышающих 10…15 мм, и при давлении в межтрубном пространстве не выше 0,25 МПа.

Рис. 3. Теплообменники с компенсацией температурных удлинений:

а – с «плавающей» головкой открытого типа; б – с «плавающей» головкой закрытого типа; в-с линзовым компенсатором; г – с сальниковым компенсатором; д- с U – образными трубами; е – с двойными трубами;

1 – кожух; 2 – «плавающая» головка; 3 – линзовый компесатор; 4 – сальник; 5 – U – образные трубы; 6 – наружная труба с закрытым нижним концом; 7 – внутренняя труба с открытыми концами; ,  – теплоносители.

В теплообменнике с сальниковым компенсатором (рис. 3.г) одна из трубных решеток при температурных расширениях может свободно перемещаться вдоль оси. Уплотнение патрубка, по которому выводится из теплообменника теплоноситель , достигается установкой на верхнем днище сальника 4.

В теплообменнике с U – образными трубами (рис. 3.д) оба конца труб закреплены в одной трубной решетке. Каждая труба может свободно удлиняться независимо от других; при этом температурные напряжения не возникают.

В теплообменнике с двойными трубами (рис. 3.е) каждый из теплообменных элементов состоит из двух труб: трубы 6 с закрытым нижним концом и расположенной внутри нее трубы 7 с открытыми концами. Верхний конец трубы 7 закреплен в верхней трубной решетке, верхний конец трубы 6 – в нижней трубной решетке. Теплоноситель поступает в трубу 7 сверху и, пройдя ее, движется далее по кольцевому каналу между трубами 6 и 7. Теплообмен между теплоносителями и  осуществляется через стенку трубы 6. Каждая из труб 7 и 6 может свободно удлиняться без возникновения температурных напряжений. Очень важным фактором, определяющим работу теплообменников, является скорость движения теплоносителей. При увеличении скорости возрастает интенсивность теплообмена, но увеличивается гидравлическое сопротивление. Оптимальные скорости обычно соответствуют устойчивому турбулентному режиму движения теплоносителей и в большинстве случаев лежат в пределах 0,1…2 м/с для жидкостей и 2…20 кг/(м2с) – для газов.

2. Расчет теплообменника

Задание на проектирование. Спроектировать и рассчитать кожухотрубный теплообменник для подогрева воды по следующим данным:

Трубы стальные, давление греющего насыщенного водяного пара в межтрубном пространстве рг.п. = 4 кгс/см2, массовый расход воды в трубном пространстве Gв = 25 кг/с, скорость движения воды по трубам wв = 1 м/с, начальная температура воды tн = 290С, конечная температура воды tк = 810С

Процесс передачи теплоты от горячего теплоносителя холодному, учитывающий теплоотдачу от горячего теплоносителя стенке, теплопроводность стенки и теплоотдачу от стенки к холодному теплоносителю подчиняется основному уравнению теплопередачи, которое для установившихся процессов и единицы времени имеет вид:

Q = KFtcp (Вт), (1)

где К – коэффициент теплопередачи Вт/(м2К); tср – средняя разность температур между теплоносителями 0С или К; F – площадь поверхности теплообмена м2.

, (2)

Ориентировочные значения коэффициентов теплоотдачи при конденсации водяных паров 1 = 4000…15000 Вт/(м2К), а для воды, проходящей по трубному пространству 2 = 1200…5800 Вт/(м2К).

Ориентировочные значения коэффициентов теплопередачи от конденсирующегося пара к воде К = 800…3500 Вт/(м2К).

Этими значениями обычно пользуются в предварительных и проверочных расчетах.

Площадь теплопередающей поверхности теплообменника определяют из уравнения (1)

(3)

Здесь количество теплоты Q определяется из уравнений теплового баланса. Коэффициент теплопередачи К – по формуле (2), а коэффициенты теплоотдачи определяют по эмпирическим формулам или через число Нуссельта Nu по уравнениям подобия. Среднюю разность температур tср определяют по среднеарифметической или средне-логарифмической формулам.

  1. Тепловой расчет теплообменника

Тепловой расчет теплообменника заключается в определении площади теплопередающей поверхности теплообменника по формуле (3), т.е. в предварительном определении величин Q, K, tcp. Для этих расчетов необходимо определить физические параметры теплоносителей.

Физические параметры теплоносителей

Физические параметры теплоносителей:

для воды – теплоемкость, коэффициент теплопроводности, плотность, коэффициент вязкости;

для пара – удельная теплота парообразования.

Для горячего теплоносителя (пара) этот параметр определяют по таблице 2 или 3 приложения при температуре пленки конденсата. Это температура примерно на 30С ниже температуры греющего пара, которую определяют по заданному давлению пара рг.п.(табл. 3). Для холодного теплоносителя (воды) физические параметры определяют при средней температуре воды табл. 1).

Для определения физических параметров часто используют метод интерполяции, что допустимо для инженерных расчетов.

Определение тепловой нагрузки аппарата и расхода горячего теплоносителя

Тепловую нагрузку аппарата и расход горячего теплоносителя определяем из уравнения теплового баланса при нагреве холодного теплоносителя при конденсации водяного насыщенного пара:

Qпр = D r;

Qрасх = 1,05  G  с(t2 – t1) (4)

где D – расход греющего пара, кг/с;

r – теплота парообразования (конденсации), Дж/кг;

1,05 – коэффициент учитывающий потери тепла в размере 5%;

G = V   – массовый расход воды, кг/с;

V – объемный расход воды, м3/с;

 – плотность воды, кг/м3;

t1, t2 – начальная и конечная температура воды, 0С;

с – средняя удельная теплоемкость воды, Дж/(кгК).

Приравнивая правые части уравнений (4), определяем D:

(5)

Определение средней движущей силы процесса теплопередачи tср

Для многоходового теплообменника имеет место смешанный ток движения теплоносителя. В расчетной практике рекомендуется определять среднюю разность температур, так же как при противотоке, а затем вводить поправку в виде коэффициента.

В случае конденсации пара на трубах расчет будет одинаков как для прямотока, так и для противотока, а значение коэффициента  можно принять равным 1.

Для определения tср находим tmax, tmin, их отношение и tср по среднеарифметической или по среднелогарифмической формулам (6) или (7).

Для нашего случая горячий теплоноситель не изменяет своей температуры, т. к. процесс теплоотдачи идет при конденсации пара при tк.

Расчет площади поверхности теплообменника

Определим ориентировочную площадь теплообменника по формуле

Количество теплоты найдем из формулы 4

Q = D · r = 2,65 · 2150000 = 5,7 · 106 Вт.

Ориентировочный коэффициент теплопередачи возьмем как среднее значение (см. п. 1) (800 + 3500)/2 = 2150 Вт/(м2·К), тогда

м2.

Определим количество труб на один ход

, (8)

где n – число труб на один ход, N – общее число труб, z – число ходов, dвн – внутренний диаметр труб (в кожухотрубных теплообменниках обычно применяют трубы диаметрами 20? 2 и 25? 2 мм, поэтому n находят для обоих диаметров), Rе – число Рейнольдса, G – массовый расход воды, кг/с.

Число Рейнольдса Re характеризует соотношение между силами инерции и силами трения.

, (при d = 20? 2 мм); (9)

, (при d = 25? 2 мм).

Тогда

,

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5184
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее