85504 (Алгоритм решения Диофантовых уравнений)

2016-07-30СтудИзба

Описание файла

Документ из архива "Алгоритм решения Диофантовых уравнений", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85504"

Текст из документа "85504"

Алгоритм решения Диофантовых уравнений

Нижнегородская область

Г.Заволжье

2009 г.

В работе рассмотрен метод исследования Диофантовых уравнений и представлены решенные этим методом:

- великая теорема Ферма;

- уравнение Пелля;

- уравнения эллиптических кривых У2=X3+K,

23-Х, У23-Х+1, У23+аХ+В);

- иррациональные корни уравнения Х22=1;

- поиск Пифагоровых троек;

- уравнение Каталана;

- уравнение гипотезы Билля

Решение Диофантовых уравнений

Лирическое отступление (ЛО) – 1

Всё началось с теоремы Ферма.

В клубе фермистов оказался случайно, решал совершенно другую задачу, и неожиданно пришла идея ВТФ. Я даже не помнил её классическое написание – хnnn , формулу ВТФ написал в виде хn = уn + сn, а потом не стал переучиваться, т.к. привык к своему написанию формулы.

ЛО – 2. При доказательстве ссылаюсь на закон распределения простых чисел. Можно было бы обойтись без упоминания оного. Просто сохранил историческую правду, т.к. лично для меня этот закон стал подсказкой.

ЛО – 3. Этот же подход был применён для решения уравнения гипотезы Биля и решения других уравнений. Выводы получились интересными.

Для себя обкатал этот метод на нескольких шуточных уравнениях. При профессиональном подходе, похоже, этот метод может дать как качественные выводы, так и количественные, окончательный же приговор этому методу будет сделан совместными усилиями.

Великая теорема Ферма. Решение

– не имеет решений в целых числах при показателе степени n>2.

Для доказательства данного утверждения было рассмотрено аналогичное функциональное уравнение. Чтобы получить функциональное уравнение надо обратиться к закону распределения простых чисел в ряду натуральных чисел. В таблице изображена матрица распределения составных чисел в ряду натуральных чисел.


4

+2

6

+2

8

+2

10

+2

12

+2

14

+2

16

+2

18

+2

+3

+4

+5

+6

+7

+8

+9

6

+3

9

+3

12

+3

15

+3

18

+3

21

+3

24

+3

27

+6

+2


+6

8

+4

12

16

20

24

28

32

36

+2

10

+5

15

20

25

30

35

40

45

+6

+2


+7

12

+6

18

24

30

36

42

48

54

+2

14

+7

21

28

35

42

49

56

63

+2

16

+8

24

32

40

48

56

64

72

+2

18

+9

27

36

45

54

63

72

81


Формула любого составного числа, соответствующего этой матрице, имеет вид - ( i + 1) ( j + 1), где i - номер столбца этой матрицы,

j – соответственно, номер строки этой матрицы. Для верхней строки ( = 1) формула составного числа примет вид – 2( i + 1) – это ряд чётных чисел.

Всё это пока заготовка для доказательства великой теоремы Ферма (ВТФ).

Нечётные числа примут вид 2( i + 1) ± 1. В нашем случае пусть нечётные числа будут - 2( i + 1) - 1.

Чтобы доказать ВТФ надо рассмотреть три варианта:

- I X - чётное число, У - чётное число, Z - чётное число;

  • II X - чётное число, У - нечётное число, Z - нечётное число;

  • III X - нечётное число, У - чётное число, Z - нечётное число.

Вариант I. Пусть уравнение ВТФ верно для чётных чисел.

В формулу ВТФ вставим аналитические выражения чётных чисел.

[2( 1 + 1)]n = [2( 2 + 1)]n + [2( 3 + 1)]n ,

где для определённости возьмём 1 > 2 > 3

После упрощения.

( 1 + 1)n = ( 2 + 1)n + ( 3 + 1)n

По сути, природа этого уравнения та же, что и уравнения ВТФ, т.к. зависимость между Х, У, Z и столбцами матрицы i – функции соответствующие линейным уравнениям.

Можно составить систему подобных уравнений.

………………………………………… (а)

Каждое уравнение этой системы также является функциональным уравнением ВТФ.

Для обоснования данного утверждения рассмотрим следующий пример.

Вычислим несколько значений соответствующих числу 10 по формуле чётных чисел.

2( 1 + 1)=10 1 =4

2( 2 + 2)=10 2 =3

2( 3 + 3)=10 3 =2

Т.е. переменная может принимать значения от 1 до .

Условием для существования системы уравнений (а) служат лишь условия

и .

Данные условия слабее условий существования пифагоровых троек, где, если (а, в, с) – пифагорова тройка, то таковою будет и тройка (nа, nв, nс), при всех n = 1, 2, 3 …

Т.е. система (а) должна быть справедливой для всего ряда натуральных чисел, при условии неизменности величин р и f, и условии 3 +1

Это следует при предположении справедливости уравнения ВТФ – .

У системы уравнений (а) есть 2 варианта:

- I - каждое уравнение системы имеет решение;

- II - каждое из уравнений системы не имеет решений.

Если взять в уравнении системы к = - 3, тогда уравнение примет вид

Данное уравнение вида не может иметь решений в целых числах при n>2.

Тогда не верно любое уравнение системы и следовательно не верно и уравнение ВТФ.

Рассматривались чётные значения Х, У, Z.

В системе уравнений (а) переменные I принимают значения всех чисел натурального ряда, и чётных и не чётных. Тогда ВТФ тоже доказана для всего ряда натуральных чисел. Если же рассматривать варианты II и III доказательства ВТФ, тогда функциональные уравнения примут вид:

II [2( 1+1)]n=[2( 2+1)-1]n+[2( 3+1)-1]n

III [2( 1+1)-1]n=[2( 2+1)]n+[2( 3+1)-1]n

Принципиально в доказательстве ВТФ это ничего не меняет.

Для обоснования данного, довольно – таки экзотического на сегодняшний день метода, далее будут рассмотрены некоторые известные задачи.

Уравнение Пелля

(1)

Рассмотрим 3 варианта:

- I Х - чётное число, У - нечётное число, n - нечётное число;

- II Х - нечётное число, У - нечётное число, n - чётное число;

- III Х - нечётное число, У - чётное число, n – любое, и чётное, и нечётное число.

И всегда Х > У

Вариант I.

Составим функциональное уравнение.

, где, конечно же, 1 > 2

Возьмём к = - 2, тогда

После преобразований

(2)

где ; .

Окончательно, после подстановки будет

, где n = 3, 15 . . . . .

Проверим при n = 3

а) ,

б) ,

Подставим (а) в уравнение (1)

Для случая Х = 2, У = 1, n = 3 будет

Подставим (б) в уравнение (1)

Для

Проверка даёт

Для

Проверка даёт

Составим последующее функциональное уравнение.

После упрощения

где ,

После подстановки

Следующее функциональное уравнение примет вид

После упрощения

где ,

После подстановки

Получилась система бесконечных решений:

(3)

Вариант II.

Функциональное уравнение примет вид.


После преобразований будет

, где n чётные числа n = 8, 24 ……

Само же выражение идентично формуле (2).

Система бесконечных решений примет вид системы (3).

Тогда система решений (3) будет общей для вариантов I и II при n – чётных и нечётных числах.

Вариант III.

Также напишем функциональное уравнение.

Опускаю все вычисления, - напишу окончательный результат:

На решении данного уравнения Пелля подтверждено следующее утверждение из доказательства ВТФ:

Или все формулы системы функциональных уравнений имеют решения, или же в системе уравнений нет ни одной такой формулы.

Мне не приходилось встречать классического решения этого уравнения, - для меня это чистый экспромт. Специалисты могут сравнить.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее