151493 (Анализ и моделирование методов когерентной оптики в медицине и биологии), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Анализ и моделирование методов когерентной оптики в медицине и биологии", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151493"

Текст 2 страницы из документа "151493"

Таким образом, имеем концентрические кольца с радиусом:

,

где п — целое число, а л — длина волны лазера.

Рис. 1.5. Голограмма Фраунгофера (а) волокнистых частиц и изображения отдельных частиц (б, в, г), восстановленные с участков голограммы А, В, и С соответственно (С согласия Ботнера и Томпсона [1.8]).

Эффективный диаметр Dэфф голограммы ограничен из-за того, что при некотором п расстояние между соседними кольцами становится слишком маленьким для разрешения. При восстановлении поперечное разрешение ограничивается дифракцией:

.

Для практических целей можно разрешить детали, сравнимые с л. Можно обнаружить меньшие частицы, но нельзя определить их форму. Изображениями их являются просто кольца диаметром . К сожалению, изображение выходит из фокуса таким образом, что на глубинах, отличных от d, мы все еще наблюдаем создаваемую частицей картину. Мы знаем, что находимся на нужной глубине, если изображение имеет минимальный размер и, в идеале, не имеет структуры концентрических колец. Таким образом, передвигают проекционный экран или видикон на различные расстояния с тем, чтобы найти истинное значение d. Такая операция может быть легко автоматизирована. Все эти методы требуют лазерного освещения, а оно приводит к специфическому эффекту лазерных спеклов (зернистой структуры лазерного освещения). Природа лазерных спеклов и возможности борьбы с ними широко исследовались в течение многих лет, и существует много «решений» (значительно различающихся по сложности и практичности) [1.9, 10]. Многие из этих решений пригодны только в особых случаях, для которых они были разработаны, и ни одно из них не является универсальным средством подавления спеклов. Возможно, эти вездесущие пятнышки являются первичным барьером на пути более широкого применения голографической микроскопии. На рис. 1.6 показано изображение спеклов до и после операции их подавления. В данном случае спеклы были устранены (минимизированы) просто с помощью формирования изображения при большой числовой апертуре. Обычно размеры спеклов дифракционно-ограничены, они становятся меньше по мере увеличения числовой апертуры.

1.2 Формирование трехмерного оптического макроскопического

изображения

Для нас, людей, наиболее интересными являются макроскопические биологические объекты, а именно мы сами и наши важнейшие «составные части». Мы хотим получать изображения и производить измерения. Когерентная оптика все это выполняет.

Рис. 1.6. Одно и то же изображение со спеклами и без спеклов.

Измерения можно отделить от формирования изображений. В этом разделе мы будем иметь дело исключительно с формированием оптических изображений средствами когерентной оптики. В качестве конкурента здесь выступает обыкновенная фотография.

Голография является очевидным подходом к решению вопроса о формировании биологического изображения. Гара и др. [1.11] было детально описано устройство для записи и измерения точной трехмерной информации о больших объектах. Голограмма записывалась при помощи обыкновенного импульсного лазера. Для получения трехмерного изображения с точными размерами при восстановлении мы должны использовать ту же длину волны, что и при записи. Причина вполне понятна. Голограмме, подобно линзе, присущи ограничения, связанные с фундаментальными законами дифракции. Так, если R есть отношение длины волны света, используемого при восстановлении, к длине волны записывающего света, то поперечное увеличение системы равно R, но продольное увеличение будет равно R2. Это означает, что оба увеличения равны только в случае, если R = R2 , т.е. R=l. Таким образом, чтобы получить реальное неискаженное изображение, мы должны освещать голограмму восстанавливающим пучком, идентичным опорному пучку во всех отношениях, кроме одного: восстанавливающий луч обратен по направлению. Гара и др. [1.11] производил запись с помощью импульсного лазера, с тем чтобы «заморозить» движение объекта, а затем воспроизводил реальное изображение с помощью лазера, работающего в непрерывном режиме с той же длиной волны.

И, наконец, изображение сканировалось в трех измерениях с целью описания объекта как поверхности, находящейся на расстоянии S(x, у) от плоскости голограммы в каждой точке (x, у) в этой плоскости. Полезность этого метода для формирования изображения всего тела очевидна. Необходимость же иметь такое детализированное изображение всего тела не так очевидна, так что этот мощный инструмент ждет задачи, оправдывающей затраты на него. Пригодность этого метода для биологических задач была продемонстрирована при формировании изображений моделей черепа с последующим выделением профилей. На рис. 1.7 показаны горизонтальные профили модели, сделанные Гара и др. [1.11]. Были сделаны как микрометрические, так и голографические измерения положения меток, нанесенных на череп. Среднеквадратичное значение разницы между указанными координатами равнялось — 40 мкм. Ту же самую задачу по выделению трехмерных координат поверхности для свободно расположенных объектов пытались решить другими, существенно некогерентными методами. Эту задачу можно назвать «стереометрией». Стереометрия не подразумевает классическую стереофотографию или «фотограмметрию*. Скорее, это есть общее название, данное любому методу трехмерного измерения (не обязательно формированию изображений).

Рис. 1.7. Профили модели черепа, полученные при помощи голографического метода Тара и др. [1.11] (С разрешения исследовательской лаборатории фирмы General Motors Corporation)

Наиболее распространенным видом стереометрии является расчет на ЭВМ или даже когерентно-оптическая расшифровка стереофотографических пар [1.12]. Новый метод, использующий временные задержки для кодирования пространственной информации [1.13], непосредственно выдает стереометрическую информацию о нескольких тысячах точек в секунду. Точность определения глубины этим последним методом (называемым лазерной стереометрией) на порядок хуже точности метода Гара и др., но зато информация поступает в реальном времени и отпадает необходимость в вычислительной машине.

Так как лазерная стереометрия не использует когерентность лазера, мы не будем здесь ее рассматривать. Она упоминается для того, чтобы оставить определенные перспективы п будущем для голографической стереометрии. Это медленный метод, требующий большой осторожности при пользовании им, но с его помощью достигается большая точность, чем в каком-либо другом методе. И снова неголографические методы оказываются почти такими же хорошими и более простыми, чем голографические.

Разумеется, могут быть успешно использованы и менее разработанные голографические методы. Основным преимуществом их оказывается возможность трехмерной записи. Вопрос состоит не в том, что можно сделать, а в том, для чего нужна эта техника. Для чего именно нужна запись с полной трехмерной точностью? Редкий патологический объект? Действия уникально квалифицированного хирурга в редкой операции? Последний почтовый голубь? Что бы это ни было, оно должно быть достаточно редким, чтобы оправдать запись полностью, и достаточно важным, чтобы оправдать трудности голографирования. На сегодня выяснен только один ответ: голография с помощью оптических элементов (линз) становится широко распространенным средством для записи сетчатки и внутренней полости глаза [1.14].

1.3 Формирование двумерного изображения

Несмотря на то, что не существует объектов — биологических или каких-либо других, имеющих строго два измерения, имеются реальные преимущества для записи двумерных изображений в биологии и медицине, так же как и реальные преимущества использования голографии для этих целей. Рассмотрим сначала применения, а потом использование голографии в них.

Существуют две категории интересующих нас двумерных изображений: регистрация символов и изображения объектов. К символическим регистрациям относят диаграммы, графики, печатные страницы и др. Проблемой для биомедицинского исследования здесь является объем информации. Необходим дешевый, компактный, легко доступный, легко копируемый, нечувствительный к повреждениям способ храпения, позволяющий лучшее использование, хранение и обмен необработанных данных. Двумерные изображения обычны, так как они являются самыми легкими для записи и, как правило, самыми простыми для интерпретации. Требования к ним идентичны требованиям к хранению символических изображений плюс дополнительное требование, чтобы большое число градаций было использовано в тоновых изображениях. Так, в случае формирования двумерного изображения голографию следует рассматривать не как прямое средство записи изображения, а как средство архивного хранения изображений, записанных другими способами (например, фотографическим, компьютерным построителем, печатанием па пишущей машинке). Способность легко и просто записывать и воспроизводить данные, низкая стоимость и высокая плотность и нечувствительность к потерям вследствие дефектов должны увеличить полезность всех предпринимаемых сегодня исследовательских усилий.

Голография имеет некоторые ярко выраженные преимущества как метод хранения. Рассмотрим Фурье-голограммы, записанные в какой-либо легкодоступной среде, например на фотографической пленке. Много голограмм полных страниц с данными хранятся рядом друг с другом. Преимущества этого очевидны. Во-первых, проблема фокусировки при записи (очень жесткая при микрофильмировании) просто-напросто исчезает. Так как записан волновой фронт (а не просто изображение), голограмма не может быть не в фокусе.

Во-вторых, проблема фокусировки при воспроизведении (опять же сложная при воспроизведении микрофильма) фактически отсутствует, так как голограмма настолько мала, что каждая деталь проектируется с малым относительным отверстием (и, следовательно, с очень большой глубиной резкости). В-третьих, оборудование при воспроизведении—простое и недорогое, включая Не—Ne-лазер для освещения каждой голограммы, механическую каретку для перемещения пленки так, чтобы выбранная голограмма попадала в пучок, и проекционный экран. В-четвертых, копирование — простое, некритичное и дешевое. В-пятых, запись компактна. Читаемый вариант этой страницы может быть записан на голограмме диаметром 2—3 мм. В-шестых, запись является в некотором смысле неуязвимой к повреждениям и пыли. Информация записана в распределенной форме, так что затемненная часть голограммы приводит лишь к малозаметному ухудшению всего изображения, но она не уничтожает полостью ни одной его детали. Более того, царапины, не параллельные интерференционным полосам голограммы, не влияют на изображение. В-[1.15] можно ознакомиться с деталями этого метода.

2. Неоптические методы формирования изображений

Поскольку отображение тканей в неоптическом и оптическом излучениях различно, целесообразно формировать неоптические изображения. Необходимо, чтобы выходное изображение было видимым, хотя входная информация является невидимой. Когерентная оптика играет важную роль в формировании неоптических изображений. Во-первых, она дает полезные аналогии (например, оптическую голографию), которые без труда распространяются на неоптические области. Во-вторых, она является средством получения требуемых видимых изображений.

2.1 Акустическая голография

Акустическая голография дает хорошие примеры обеих операций в неоптической области, получаемых, но аналогии с когерентной оптикой и использованием когерентного оптического восстановления. Мы подведем итоги некоторых результатов. Для читателей, интересующихся вопросом более детально, существует прекрасная монография [1.16]. Наша цель состоит в том, чтобы подчеркнуть скорее результаты, которые можно получить, а не методы их достижения. Акустические голограммы часто формируются и считываются одновременно. Двумя распространенными голографическими средами являются поверхности жидкости (рябь на поверхности) [1.17] и жидкие кристаллы [1.18]. Также можно использовать явление дифракции Брэгга [1.19]. Во всех этих случаях восстановление в когерентном свете обеспечивает получение изображения объекта в реальном времени в виде, как он «освещается» звуком. Для наблюдения с задержкой (а не в реальном времени) существует также большой выбор регистрирующих сред [1.16].

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
429
Средний доход
с одного платного файла
Обучение Подробнее