151307 (Механізм суперіонної провідності твердих діелектриків), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Механізм суперіонної провідності твердих діелектриків", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151307"

Текст 2 страницы из документа "151307"

Повернемося тепер до мал. 4. Видно, що для переходу (перескоку) з вузла в міжвузілля іону потрібно набрати

Рис. 5. Схема руху вакансій

а — вихідне положення, 6 — проміжне положення, у — нове положення

Рис. 6. Криві провідності для іонного кристала AgCl (у відносних одиницях)

1-чистий кристал, S, а-кристали з домішками CdCl» зростаючої концентрації


енергію більшу, ніж для переходу з міжвузілля в міжвузілля (ці величини, обумовлені різницею рівнів енергії вершини бар'єра і дна відповідної ями, звуться енергії активації). Зі сказаного ясно, що переходи з міжвузілля в міжвузілля під дією теплових коливань можуть відбуватися значно легше і тому частіше, ніж з вузла в міжвузілля . Поступово, переходячи з міжвузілля в міжвузілля , іони віддаляються від своїх вихідних «материнських» вакансій і весь обсяг кристала виявляється заповненим своєрідним газом іонів у міжвузіллях . Звичайно це іони одного сорту, саме ті, котрі можуть утворити дефект Френкеля з найменшою витратою енергії. Вакансії, у свою чергу, не залишаються на місці. Їх рух по кристалу здійснюється шляхом послідовних перескоків у незайнятий вузол сусідніх іонів. При такому перескоці вакансія зміщується у вузол, який раніше був зайнятий сусіднім іоном, що перескакує, тому напрямок її руху протилежно направлінню іона, що перескакує, (мал. 5). Знак электричного заряду, що переноситься вакансією, також, мабуть, протилежний за знаком заряду іона, що її утворив.

Впровадження іонів у міжвузілля , що супроводжується утворенням дефектів Френкеля, може відбуватися порівняно легко в кристалах з досить просторим пакуванням, коли розміри міжвузілль відносно великі. Надалі структурам саме такого роду я приділимю основну увагу. Однак для повноти картини поясню, яким чином відбувається розупорядкування в кристалах з відносно щільним упакуванням атомів (нагадаю, що необхідність розупорядкування диктується термодинамікою). Відповідна модель була запропонована німецьким фізиком В. Шотткі в 1930р. Відповідно до цієї моделі іони (чи атоми) виходять з обсягу кристала на поверхню, добудовуючи кристалічні ґрати зовні. В кристалі при цьому залишаються вакансії. Іноді такий процес образно називають засмоктуванням вакансій з вакууму. Для бінарних хімічних сполук, зокрема іонних кристалів, з умови відсутності сумарного заряду в кристалі випливає, що вакансії повинні існувати в решітках обох компонентів в еквівалентних кількостях.

Таким чином, внаслідок виникнення дефектів відповідно до механізмів, що запропонував Френкель і Шотткі, у кристалі необхідна присутність іонів в міжвузіллях і залишені ними порожні місця — вакансії. Міжвузільні іони обох знаків і вакансії обох знаків, що утворяться в хімічно чистих кристалічних сполуках, називають власними точковими дефектами.

Оскільки власні точкові дефекти виникають внаслідок термічних перескоків іонів, рівноважна концентрація цих дефектів визначається температурою кристала і дуже швидко збільшується з підвищенням температури. Разом з тим енергія утворення точкових дефектів досить велика, так що навіть поблизу температури плавлення звичайні кристали рідко містять більше декількох десятих часток відсотка власних дефектів (тобто 2—3 «порушення» на 1000 правильних вузлів).

Невласні, змішані, точкові дефекти або присутні в кристалі випадково, що, звичайно, менш цікаво, або додаються цілеспрямовано під час вирощування кристала для того, щоб уплинути на його властивості, особливо на процеси іонного переносу.

Якщо, наприклад, до хлористого натрію NaCI, кристалічна ґратка якого зображена на мал. 2, додана невелика кількість хлориду стронцію SrCl, то прищеплені двозарядні іони Sr2+ займають вузли звичайно зайняті однозарядним іоном Na. отримуваний в обсязі кристала надлишковий заряд повинен бути чимось зкомпенсований, тому в іншім місці решітки виникає катіонна вакансія (тобто порожній вузол, що «у нормі» повинний займати катіон Na+). Ясно, що виникнення такої вакансії збільшує рухливість катіонів натрію: процес руху перетворюється в обмін місцями іона і дефекту.

Можлива і трохи інша картина. Якщо, наприклад, до фториду стронцію SrF2 додати фторид лантану LaF3, то іони тривалентного лантану La3+ розміщаються в катіонних вузлах замість Sr2+ .Однак компенсація надмірного заряду досягається тут впровадженням у міжвузіллях i додаткових аніонів фтору F-.

Таким чином, сукупність власних і примісних дефектів забезпечує іонам можливість переміщуватися. При цьому в реальній тривимірній структурі на відміну від одновимірної схеми, зображеної на мал. 4, іони можуть, огнаючи глибокі ямки-вузли і перескакуючи тільки по міжвузіллям, подорожувати по всьому кристалі! (недарма, нагадаємо, слово «іон» означає «мандруючий»). При низьких температурах таких окремих мандрівних по міжвузіллям іонів мало і рухаються вони дуже повільно, оскільки перескоки здійснюються досить рідко, так що фактично іонна провідність виявляється дуже невеликою. З ростом температури збільшується як число іонів у міжвузіллях, так і частота перескоків. Завдяки цьому, відповідно до уявленнь, при нагріванні іонна провідність кристала повинна поступово зростати. Щоб стало зрозуміліше, що заздалегідь це аж ніяк не очевидно, нагадаємо, що провідність металів поводиться саме навпаки: з ростом температури вона убуває. Зроблене твердження про температурне поводження іонної провідності може бути перевірене експериментально.

Сучасні експерименти по виміру электричної провідності кристалів виконують на ретельно приготованих зразках правильної геометричної форми з точно обмірюваними розмірами. Зразки нагрівають в інертній атмосфері, так щоб гарантувати постійність їхньої сполуки. Температуру в гарних експериментахконтролюють з точністю, що перевищує 0,1° С, причому явцілях зменшення похибки потрібно одержати багато десятків точок на кожен градус у можливо більш широкому інтервалі температур. Самі виміри електропровідності проводяться за допомогою спеціальних електричних схем на перемінному струмі, зокрема, щоб уникнути похибок, зв'язаних з ефектами на границі розділу (до цих ефектів я ще повернуся). Результати вимірів, щоб виключити випадкові покази, піддають математичній обробці. Набір кривих іонної провідності, вимірюваних таким чином для кристала хімічно чистого хлориду срібла AgCl і для кристалів хлориду срібла з домішками хлориду кадмію CdCl2, приведений на мал. 6. Уздовж вертикальної осі тут, як раніше , відкладається логарифм питомої провідності lgσ, у силу чого при зсуві на одну поділку σ змінюється в 10 разів. Температypa вимірюється тут не в шкалі Цельсія, а в абсолютній шкалі Кельвіна (нагадаємо, .що абсолютна температура Т відрізняється від обмірюваної по шкалі Цельсія t на 273°, так що, наприклад, температурі t = 20° С відповідає Т=293°ДО). На горизонтальній осі відкладається не сама абсолютна температура Т, а зворотна їй величина 1/Т; таким чином, зростаннюТ відповідає зсув по горизонтальній осі справа-наліво.

Як видно з мал. 6, по-перше, провідність дуже сильно залежить від Т, по-друге, ця залежність має саме такий вигляд, який слід очікувати. В області щодо високих температур (величина - 1/Т мала) провідність визначається власними дефектами і збігається для чистого кристала і кристалів, утримуючих домішки. При більш низьких температурах число власних дефектів різко падає. Провідність чистого кристала стає незначною. Не «виморожується» лише примісна провідність, обумовлена рухом іонів по катіонних вакансіях, що виникла завдяки добавкам двозарядних іонів Cd2+ у решетку срібла. Для кристала з більш високою концентрацією домішки, де число носіїв струму повинно бути більше, низькотемпературна провідність, як і очікувалось, виявляється вище і перехід до власної провідності відбувається при більш високих температурах (кристали, що відповідають кривим 2 і 3, мали вміст кадмію відповідно 60 і 480 частин на мільйон).

Нарешті, нахил кривих примісної провідності в oб ласті низьких температур (великі 1/Т) виявився| однаковий, оскільки він обумовлюється однаковою прв чиною — температурною залежністю частоти перескоку іонів.

Тут розповідалося лише про якісния узгодження теорії з експериментом (що саме по собі не мало!) Разом з тим з математичної розробки викладених уявлень випливають конкретні кількісні співвідношення, що зв'язують іонну провідність з тим пературою, концентрацією домішок, а також з параметрами, що характеризують кристал. Уже давно було приблизно встановлено, а пізніше детально подтверждено кількісна згода відповідних формул з даними ретельно поставлених експериментів.

Були враховані і більш тонкі ефекти. Міжвузільні іони і вакансії є носіями электричного заряду. Тому, згідно (відомому зі школьнї лави) закону Кулона, вони повинні додатково взаємодіяти між собою: міжвузлові іони як частки, що мають заряд одного знака, відштовхуватися одне від одного, вакансії також відштовхуватися, а міжвузульний іон і вакансія як частки, протилежно заряджені, притягатися. Можна сказати, що така взаємодія системи в цілому аналогічна взаимодії іонів у розчинах електролітів, причому роль іонів грають точкові заряджені дефекти, а роль розчину -- электрически нейтральний обсяг кристала. Тому природньо, що для опису такої взаємодії використали вже розроблену теорію електролітів не занадто високої концентрації. Уперше на цю обставину звернув увагу ще Я. И. Френкель. Такий підхід дав можливість додатково уточнити деякі питання іонної провідності кристалів.

При зближенні дефектів різного знаку відбувається їх асоціація (об'єднання). При зближенні пари міжвузільний іон-вакансія асоціація приводить до зникнення дефекту. Однак при зближенні, наприклад, двох різнойменних вакансій виникає комбінований незаряджений дефект, названий бівакансією. бівакансії, як і точкові дефекти, можуть переміщатися по гратці шляхом обміну іонами з «нормальними» вузлами. Хоча сумарний заряд бівакансій дорівнює нулю, вони володіють деяким дипольним моментом і тому вносять вклад у діелектричну проникність кристалу

Вимір діелектричної проникності на різних частотах, у діапазоні від декількох до десятків мільйонів коливань у секунду, дало можливість экепериментально визначити концентрацію бівакансій при

різних температурах (які, природньо, ще менші, ніж концентрація простих точкових дефектів). Тут теж була встановлена згода теорії з экспериментом, а також встановлено відповідно до обчислень, що енергія утворення бівакансій менша, ніж енергія утворення пари вільних вакансій.

В результаті багаторічних досліджень, проведених вченими в різних країнах світу, теорія Френкеля і

базуючі на її ідеях підходи одержали повне наукове визнання, а питання про іонну провідність твердих

тіл вважалося закінченою главою фізичної науки.

Спробую тепер подивитись з позицій викладеної теории на поводження твердих електролітів. Насамперед, як уже говорилося, іонна провідність суперіонного проводника найчастіше виявляється в мільйони мільярдів разів вище «звичайних» іонних кристалів віддалених від точки плавления. Така разюча кількісна відмінність важко піддається поясненню в рамках викладених представлень. Але ця аномалія не єдина.. якісний вигляд температурної залежності іонної провідності цілого ряду твердих електролітів теж виявляється аномальним. Йодид срібла AgI — твердий електроліт, де вперше спостерігалися аномалії провідності,— демонструє типове в цьому плані температурне поводження, що характеризується стрибкоподібною зміною σ.

Інша, також уже знайома нам сполука Ag4RbI5 — рубідієвий електроліт — поводиться багато в чому аналогічно «класичному» Agl. При температурі нижче 122 К (чи 151° С) кристал Ag4RbІ5 по своїх електричних і інших властивостях цілком подібний звичайному іонному кристалу. Однак при зазначеній критичній температурі сполука стрибкоподібно переходить у суперіонний стан, причому його провідність відразу зростає більш ніж у 1000 разів. З подальшим збільшенням температури провідність Ag4RbI5, як і в йодида срібла, міняється вже монотонно, поступово зростаючи аж до точки плавлення.

Для різних матеріалів величина стрибків провідності (іноді їх декілька), а також температура цих стрибків помітно відрізняютєся одна від одної. У той же час при переході в суперіонний стан аномальність прорявляється не тільки в іонній провідності, але і . у інших фізичних характеристиках: теплоємності, теплопроводности, механічнії пружності, у коефіціенті поглинання світла, швидкості поширення звуку тощо. Але і цього мало: більш тонкі методи аналізу (про котрі мова переду) виявляють зміни також у мікроскопичній структурі кристалів.

Природньо, усе це ніяк не вкладається в рамки традиційних поглядів на процеси, що відбуваються в іонних кристалах. Виникаючі проблеми достатньо серйозні — зачіпається сама сутність, фундамент уявлень, що складалися десятиліттями.

Один із засновників квантової механіки Макс План говорив, що в науковому дослідженні потрібно зуміти задати природі правильне питання, а потім зуміти зрозуміти її відповідь. Тут потрібні не тільки старанність експериментатора і спостережливість ученого, але і готовність воспринять несподіваний результат, внутрішня впевненість у своїй правоті, а найчастіше і наукова мужність.

На питання природі про те, як змінюється з температурою провідність солей срібла, Тубанд і Лоренц одержав дивну, парадоксальну відповідь. Але вони не відступили і спробували його усвідомити. Якщо твердофазний материал дійсно перейшов у стан з іонною провідністю, що відповідає розплаву, значить він хоча б частково розплавився. Оскільки, як було встановлено струм переносять іони срібла, природньо думати, що саме вони утворюють розплав. Іншими словами, эксперимені факти можна якісно зрозуміти, якщо припустити, що має місце часткове плавлення кристалічноь ґратки твердого тіла. Конкретно у випадку кристал, Agl таке часткове плавлення повинне відбуватися npи температурі 147° С. При цьому решітка кристалу, створена позитивно зарядженими іонами срібла Ag+ (катіонна решітка), переходить у своєрідне рідкоподібний, як би розплавлений стан. У результаті катіони срібла одержують можливість вільно «перетікати» по кристалу.

Щоб переконатися в правильності висунутої гіпотези, потрібно було задати природі додаткові, більш тонкі питання і знову почути і розшифрувати відповіді. Але для цього була потрібна інша експериментальна техніка і інший рівень наукового і технічного розвитку. Через півстоліття вчені знову підійшли до проблеми суперіонногостану. Однак тепер вони були у всеозброєнні різноманітних методів фізико-хімічних досліджень і, що не менш істотно, ясно розуміли можливість численних і ефективних додатків.

КЛАСИФІКАЦІЯ СУПЕРПРІОННИХ МАТЕРІАЛІВ. АНІЗОТРОПІЯ

Усі матеріали, що мають високу іонну провідність, володіють певною структурною розупорядністю. Разом з тім характер і причини цієї розупорядності у різних по своїй природі сполук різні.

До першого типу відносяться кристали з власним структурним розупорядненням. Такі, зокрема, тверді електроліти «по мотивах» AgІ, мідь- і літі-провідні сполуки, фториди деяких двох- трьохвалентних металів. Суперіонний стан у матеріалах цього типу досягається розупорядненням однієї з підрешіток при незмінності хімічного складу речовини.

Визначною рисою ряду сполук цього типу є існування характерною температури, при якій відбувається стрибкоподібна зміна провідності, що супроводжується аномальним поводженням багатьх інших термодинамічних і кінетичних характеристик. Фізична причина такого поводження зв'язана зі стрибкоподібним, розупорядоченням — частковим чи повним — підрешітки, утвореної одним із сортів ионів. Критичні температури, що відповідають стрибкоподібному розупорядочненню, для різних кристалів дуже різні: від багатьох сотень градусів «плюс» до більш ніж сотні градусів «мінус» по Цельсию.

Важливо підкреслити одну загальну обставину: закони фізики не накладають табу на існування твердих тіл, у яких одна з подрешеток знаходиться в неупорядкованому стані аж до температур, близьких до абсолютного нуля . І сказане, мабуть, не абстрактна можливість: поліалюмінат натрію, наприклад, володіє високою іонною провідністю аж до температур порядку декількох градусів вище абсолютного нуля.

До другого типу твердих електролітів відносяться сполуки, висока іонна провідність яких обумовлена великою концентрацією домішок, що активують структурне неупорядкованння якого-небудь сорту іонів. Ці кристали називаються твердими електролітами з домішковою структурною неупорядкованістю. Типові представники таких матеріалів — тверді розчини оксидів металів різної валентності. На противагу кристалам із власним неупорядкуванням сполуки з домішковим неупорядкованням звичайно не виявляють виразного різкого температурного стрибка іонної провідності, хоча вона помітно зростає з температурою.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее