151053 (Устройство и принцип работы растрового электронного микроскопа), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Устройство и принцип работы растрового электронного микроскопа", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151053"

Текст 2 страницы из документа "151053"

Начиная с 1965г. в конструкцию растрового электронного микроскопа было введено много новшеств. Одним из них был разработанный Броэрсом источник электронов с катодом из гексаборида лантана - LaB . Электронная пушка с таким катодом обладает высокой яркостью, в результате чего стало возможным сконцентрировать больший электронный ток в меньшем по сечению пучке. Это может привести к эффективному улучшению разрешения. Источник электронов с автоэмиссионным остриём, который использовался впервые в растровом электронном микроскопе в 1942г., был доработан Крю, и его стало возможным использовать для получения изображений с высоким разрешением. Автоэмиссионная пушка превосходна для получения высоких разрешений из-за её очень высокой яркости и чрезвычайно малых размеров источника. Вследствие этого даже при очень малых токах пучка, порядка10 Å можно получить очень большую плотность тока, достигающую несколько тысяч ампер на квадратный сантиметр. Автоэмиссионные источники имеют два потенциальных недостатка, один из которых - быстрое ухудшение разрешения при работе с токами, превышающими несколько наноампер, и другой связан с тем, что источник не столь стабилен, как требуется. Из-за последнего для получения качественного изображения с такими источниками почти всегда необходимо работать с быстрой развёрткой.

Другие усовершенствования связаны с механизмами контраста, которые нелегко реализовать в приборах других типов. Так, кристаллографический контраст, формирующийся за счёт ориентации кристалла и взаимодействия его решётки с первичным пучком, был обнаружен Коутсом и первоначально разработан сотрудниками Оксфордского университета. Магнитный контраст в некоторых некубических материалах наблюдался одновременно, но независимо Бэнбери и Джоем. Магнитный контраст в кубических материалах впервые наблюдался Филибером и Тиксье, а механизм контраста был объяснён позже Фазерсом и др.

Часто контраст наблюдаемых деталей настолько незначителен, что оказывается незаметным для глаза, в связи с чем становилось необходимым усиление контраста за счёт обработки сигнала. Вначале обработка сигнала включала нелинейное усиление сигнала и дифференциальное усиление (подавление уровня чёрного), как это было сделано в растровом электронном микроскопе в Кембриджском университете. Использование при обработке производной сигнала (дифференцирования) для подчёркивания мелких деталей было введено позже. Большинство серийных растровых электронных микроскопов, которые выпускаются в настоящее время, обладают всеми этими возможностями обработки сигнала.

Обработка изображения может проводиться либо в аналоговой, либо в цифровой форме. Были разработаны системы для запоминания изображений; таким образом, можно наблюдать изображение и работать с ним, включив пучок. Такие устройства чрезвычайно полезны, стоимость их не слишком высока, но они не могут обеспечить такую универсальную обработку, как полная обработка изображения с помощью малой ЭВМ. Уайт с сотрудниками разработал серию программ для обработки изображений с помощью малой ЭВМ, которые называются CESEMI и с помощью которых можно получать большое количество информации, такой , как размер зёрен, количество присутствующих фаз и т.д. Для использования всех возможностей этих программ требуется сканирование по точкам, при котором координаты точек изображения и интенсивность сигнала в точке подаются на ЭВМ. Фактически ЭВМ находится во взаимодействии с растровым электронным микроскопом и управляет его работой.

Большая глубина фокуса, присущая растровому электронному микроскопу, позволяет осуществлять стереонаблюдение трёхмерных объектов. Разработаны приспособления, которые используют эту особенность прибора и позволяют получить количественные характеристики топографии поверхности. Описаны также устройства для прямого стереонаблюдения образцов в растровом электронном микроскопе.

Добавление детектора рентгеновского излучения с дисперсией по энергии к рентгеновскому микроанализатору послужило сигналом к возможному сопряжению таких приставок с растровым электронным микроскопом. Сейчас большинство растровых электронных микроскопов оснащено устройствами для рентгеновского анализа. Таким образом, зачастую быстро и эффективно может быть получена информация о топографии, кристаллографии и составе исследуемого образца.

1.2 Устройство и работа растрового электронного микроскопа

В основе работы микроскопа лежит принцип сканирования исследуемой поверхности тонким электронным зондом.

В результате взаимодействия зонда с веществом образуются разные токи, которые улавливаются соответствующими приёмниками и преобразуются в видеосигнал. Полученный видеосигнал поступаёт на телевизионный тракт, где он усиливается, преобразуется в телевизионный сигнал с последующим воспроизведением изображением на экране кинескопа видеоконтрольного устройства .

Тонкий электронный зонд на поверхности исследуемого образца формируется электронной оптической системой микроскопа (рисунок 1.5),которая включает в себя:

а) источник электронов – электронная пушка;

б) две формирующие электромагнитные линзы – конденсор и объектив;

в) стигматор;

г) отклоняющая система.

Трехэлектродная электронная пушка состоит из «V» образного катода прямого накала, управляющего электрода и анода. Анод пушки заземлен, а к катоду приложено ускоряющее напряжение отрицательной полярности. На управляющий электрод, подается отрицательное (относительно катода) напряжение смещения, которое позволяет регулировать ток пучка, выходящего из пушки, Напряжение смещения образуется в результате протекания тока эмиссии катода по сопротивлению смещения. Известно два режима работы пушки: режим насыщения и режим пространственного заряда.

а) В режиме насыщения эмитированного с катода электроны непосредственно используются для формирования пучка. В этом режиме пучок имеет структуру, определяемую неоднородностями эмиссии с катода. Эти неоднородности видны на контрольном экране в виде расходящихся полос. Вызываются они структурой вольфрамовой проволоки, образовавшейся в процессе изготовления. Режим насыщения образуется при недостаточной эмиссии катода (т.е. при недостаточном токе накала) и малом (по абсолютной величине) напряжении смещения. Этому может также способствовать слишком большая длина катода, в результате чего его вершина входит внутрь отверстия управляющего электрода.

б) В режиме пространственного заряда перед катодом образуется электронное облачко пространственного заряда, которое и является непосредственным источником. В облаке происходит усреднение электронов, эмитированных различными участками катода, поэтому электронный пучок не несет на себе следов структуры самого катода.

Рабочим режимом пушки является режим пространственного заряда. Переход от режима насыщения к режиму пространственного заряда осуществляется путем увеличения тока накала или увеличением (по абсолютной величине) напряжения отрицательного смещения. Ток накала должен устанавливаться таким, чтобы дальнейшее его увеличение не вызывало повышение яркости пятна на экране. С течением времени происходит испарение материала катода, его диаметр уменьшается и для поддержания неизменной температуры катода следует несколько снижать ток накала по сравнению с первоначальным. Это способствует увеличению срока службы катода. В рабочем режиме распределение температуры по длине катода сказывается резко неравномерным. Концы катода охлаждаются держателями, а на вершине катода происходит некоторое снижение температуры за счет отбора эмитированных электронов. Поэтому наиболее высокая температура образуется на боковых участках катода, на расстоянии, примерно, 1/3 от его вершины. В этих местах охлаждающее действие держателей не сказывается, а ток эмиссии не отбирается.

Здесь в результате наиболее интенсивного термического испарения и происходит, как правило, перегорание катода. Если перегорание катода происходит на вершине, это свидетельствует обычно о неправильном режиме работы пушки или чаще всего плохом вакууме в колоне микроскопа. В условиях плохого вакуума происходит интенсивное разрушение вершины катода положительными ионами остаточного газа.

При работе пушки с небольшим (по абсолютной величине) напряжением смещения удается получить более интенсивный электронный пучок и, следовательно, более контрастное изображение. Но при этом получения режима пространственного заряда приходится сильнее накаливать катод, что приводит к сокращению срока его службы. Поэтому, когда это возможно, особенно при работе микроскопа с небольшими увеличениями целесообразно увеличивать напряжение смещения и снижать ток накала, что поможет увеличить срок службы катода.

Если ток накала или напряжение смещения становятся недостаточными, катод приобретает собственную структуру с несколькими максимумами интенсивности, а изображение исследуемого объекта на экране кинескопа становится многоконтурным или размазанным.

Электронный пучок выходящий из пушки, имеет форму слабо расходящегося конуса, вершина которого, кроссовер, лежит между анодом и управляющим электродом. Кроссовер, отображается с уменьшением в плоскости исследуемого образца посредством двух линзовой оптической системы.

Первая линза – конденсор даёт промежуточное уменьшенное изображение кроссовера, которое затем перебрасывается в плоскость образца второй линзой – объективом.

Перед зазором конденсора и после него установлены 2 ограничивающие диафрагмы, которые предотвращают попадание пучка на стенки внутренних каналов полюсных наконечников и отклоняющей системы.

Между конденсором и объективом установлена отклоняющая система и стигматор, намотанные на общем каркасе.

Стигматор предназначен для исправления астигматизма объективной линзы, который вызывается неоднородностью материала линзы, неточностями изготовления или загрязнения, возникшими в процессе работы. Эти причины обуславливают искажения формы пятна на образце, (вместо круглого, оно становится эллиптическим), что приводит к размазыванию деталей изображения в определенном направлении.

При изменении тока объектива вблизи положения точной фокусировки (перефокусировка – недофокусировка) происходит поворот эллипса на 90, соответствующий поворот направления размытия деталей на изображении.

Коррекция астигматизма объектива производится путем предварительного искажения формы пучка; входящую в объективную линзу. Для этого служат катушки электромагнитного стигматора. Стигматор состоит из 8 катушек, разделенных на две электрические независимые секции. Каждая секция состоит из соединенных последовательно четырех катушек, намотанных на общем каркасе. Катушки включены таким образом, что поля противоположных катушек направлены навстречу друг другу (рисунок 1.6).

Результирующее поле подобной конфигурации вызывает сжатие электронного пучка в одном направлении и растягивание его в одном направлении и растягивание в противоположном, при изменении направлении тока в одной из секций катушек на противоположное происходит поворот эллипса на 90. Оси катушек одной секции стигматора сдвинуты относительно другой на 45, что позволяет путем независимого изменения величины и направления токов в секциях регулировать величину и направление вносимой эллиптичности пучка перед объективом.

На общем каркасе со стигматором ближе к зазору объектива намотана отклоняющая система развертки, состоящая из строчных и кадровых отклоняющих катушек, оси которых взаимно перпендкулярны.

Объективная линза отображает промежуточное изображение источника на образце. При регулировки тока объектива производится фокусировка пятна на образце, следовательно, и фокусировка изображения. В зазоре объектива установлена юстируемая апертурная диафрагма, которая определяет апертуру электронного пучка на образце. При уменьшении диаметра этой диафрагмы апертура уменьшается; вместе с тем снижаются и аберрации объектива, которые пропорциональны апертуре пучка.

Уменьшение апертуры вызывает также увеличение глубины резкости изображения, но при уменьшении диаметра диафрагмы происходит также снижение тока зонда на образце и понижение контраста изображения. Поэтому диаметр апертурной диафрагмы выбирается обычно в пределах 0,5 – 1,0 мм в зависимости от конкретных условий работы.

Разрешающая способность растрового микроскопа определяется в основном диаметром зонда на образце. При этом предполагается, что ток пучка еще достаточен для формирования видеосигнала. Диаметр зонда на образце складывается из уменьшенного линзами диаметра источника и кружков размытия, вызванных аберрациями оптики. В растровых микроскопах среднего разрешения наиболее существенной является сферическая аберрация объективной линзы, пропорциональная кубу апертуры пучка на образце. Существенно снизить сферическую аберрацию можно путём значительного уменьшения коэффициента сферической аберрации, что происходит при помещении исследуемого образца в пределы немагнитного зазора объективной линзы. Возможность помещения образца в немагнитный зазор объектива является отличительной особенностью микроскопа.

Наиболее высокое разрешение наблюдается в том случае, когда образец помещается вблизи середины немагнитного зазора объектива. К сожалению, в этом случае происходит некоторое снижение глубины резкости, поэтому положение образца приходится подбирать в зависимости от конкретных условий работы и вида образцов

Диаметр канала полюсных наконечников объектива выбран достаточно большим (30 мм) для того, чтобы большинство практически встречающихся образцов можно было вводить в пределы немагнитного зазора.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
420
Средний доход
с одного платного файла
Обучение Подробнее