Untitled1 (Лекции по аналитической геометрии 1 семестр), страница 2

2013-08-16СтудИзба

Описание файла

Файл "Untitled1" внутри архива находится в папке "лекции". Документ из архива "Лекции по аналитической геометрии 1 семестр", который расположен в категории "". Всё это находится в предмете "линейная алгебра и аналитическая геометрия" из 1 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. .

Онлайн просмотр документа "Untitled1"

Текст 2 страницы из документа "Untitled1"

Утверждение. Определитель может быть разложен по любой строке или столбцу {б/д}.

Перечислим без доказательства основные свойства определителей.

  1. Столбцы и строки определителя равноправны. Следствие:

  2. Определитель, содержащий нулевую строку (столбец), равен нулю.

  3. Постоянный сомножитель любой строки (столбца) можно вынести за знак определителя.

  4. Если к любой строке (столбцу) определителя прибавить любую другую строку (столбец), умноженную на произвольное число, то определитель не изменится.

  5. Если одна из строк (столбцов) линейно выражается через остальные, то определитель

равен нулю.

  1. Если поменять местами две строки (столбца), то определитель изменит знак.

  2. det(E) = 1.

  3. (определитель произведения равен произведению определителей)

  4. Определитель диагональной и треугольных матриц равен произведению диагональных элементов.

Определение. Матрица, определитель которой равен нулю, называется вырожденной.

§4. Миноры и ранг матрицы.

Рассмотрим матрицу . Выберем k произвольных строк и k произвольных столбцов этой матрицы ( ).

Определение 1. Минором k – го порядка матрицы А (обозначается Мk) называется определитель, составленный из элементов, стоящих на пересечении выбранных k строк и столбцов матрицы А.

Определение 2. Рангом матрицы А (rang(A)) называется максимальный порядок минора, отличного от нуля. Т.е., rang(A) = r, если 1) , 2) Любой минор,

имеющий порядок r, называется базисным минором матрицы А. (Из определения сразу следует, что )

Строки и столбцы матрицы А, на которых строится базисный минор, так же называются базисными.

Имеет место очень важное утверждение:

Теорема о базисном миноре. Любая строка (столбец) матрицы А является линейной комбинацией базисных строк (столбцов). {б/д}

Любую матрицу можно рассматривать как упорядоченную систему из m n – мерных или n m – мерных векторов. Теорема о базисном миноре позволяет доказать следующую фундаментальную теорему:

Теорема 1. Ранг матрицы равен рангу системы векторов, составляющих эту матрицу.

{Для определенности рассмотрим систему строк матрицы (S). Выберем произвольный

базисный минор Mr . По предыдущей теореме любая строка матрицы, не принадлежащая

базисным, линейно выражается через базисные. Следовательно, ее можно исключить из

системы не изменив ранг самой системы (Введение, §4, Т.1). Отсюда получаем, что

rang(S) ≤ r. Но, если ранг будет строго меньше r, то одна из строк базисного минора будет линейной комбинацией остальных и Mr = 0 (§3,св.5), что противоречит условию. Таким образом – rang(S) = rang(A)}

Следствием Т.1 для квадратных матриц является обобщение свойства 5 §3:

Теорема 2. Определитель матрицы равен нулю тогда и только тогда, когда его строки (столбцы) линейно зависимы.

{Необходимость. Пусть det(An) = 0 r < n одна из строк – линейная комбинация остальных строки линейно зависимы.

Достаточность. Строки линейно зависимы одна из строк – линейная комбинация остальных. По свойству 5§3 det(An) = 0 (Вычтем эту линейную комбинацию из рассмотренной строки и получим определитель с нулевой строкой)}

§5. Вычисление ранга матрицы.

Для вычисления ранга матрицы используется два метода.

    1. Метод окаймляющих миноров.

Определение 1. Окаймляющими минорами некоторого фиксированного минора называются все миноры, полученные добавлением к нему дополнительного столбца и дополнительного строки данной матрицы ( ).

Метод заключается в отыскании произвольного отличного от нуля минора и вычисления всех миноров, его окаймляющих. Если все эти миноры равны нулю, то ранг матрицы равен рангу исходного минора. В противном случае операция повторяется. Обоснованием метода служит

Теорема 1. rang(A) = r, если {б/д}

II. Метод элементарных преобразований.

Определение 2. Элементарными преобразованиями называются следующие:

  1. Перестановка двух строк (столбцов).

  2. Умножение строки (столбца) на число, отличное от нуля.

  3. Прибавление к одной строке (столбцу) другой строки (столбца), умноженной на число.

Теорема 2. Элементарные преобразования не меняют ранг матрицы.

{При указанных преобразованиях любой минор матрицы (как обычный определитель) может изменить свое значение только следующим образом: }

Определение 3. Матрица В, полученная из А элементарными преобразованиями, называется

эквивалентной А ( ).

Определение 4. Первый ненулевой элемент строки будем называть отмеченным.

Определение 5. Матрица называется ступенчатой, если отмеченный элемент каждой строки

расположен правее отмеченного элемента предыдущей.

Теорема 3. Любая матрица приводится к ступенчатому виду элементарными преобразованиями.

{Доказательство носит конструктивный характер и будет продемонстрировано на примере}

Пример. Привести матрицу к ступенчатому виду.

(в рамках −отмеченные элементы матрицы) Алгоритм может быть применен к любой матрице.

Теорема 4. Ранг ступенчатой матрицы равен числу ее ненулевых строк.

{Снова продемонстрируем на том же примере: rang(A) = 3; в качестве базисного минора возьмем

минор, составленный из строк 1,2,3 и столбцов 1,2,4: }

§6. Обратная матрица.

Для квадратной матрицы важную роль играет понятие обратной матрицы.

Определение 1. Матрицей, обратной матрице А (обозначается ), называется матрица, удовлетворяющая условию: .

Теорема 1. Обратная матрица (если она существует) − единственна.

{Пусть у матрицы А есть 2 обратных: В и С. Рассмотрим произведение ВАС:

ВАС = (ВА)С = ЕС = С. С другой стороны ВАС = В(АС) = ВЕ = В. Отсюда В = С}

Для вычисления обратной матрицы необходимо ввести еще несколько понятий.

Легко заметить, что минор (n – 1) − го порядка у квадратной матрицы Аn можно определять, не задавая строки и столбцы, а, указав один элемент , вычеркнуть i−ю строку и j−ый столбец, на пересечении которых он находится. Поэтому минор Мп−1 матрицы Ап обычно обозначают .

Определение 2. Алгебраическим дополнением элемента называется величина .

Из определения детерминанта матрицы An сразу следует, что определитель матрицы равен сумме произведений элементов любой строки (столбца) на алгебраические дополнения этой строки (столбца): ………………………………………….(*)

С другой стороны, …………….(**)

Т.е. сумма произведений элементов любой строки (столбца) на алгебраические дополнения другой строки (столбца) равна нулю. {Фактически, мы получаем определитель с двумя одинаковыми строками (столбцами)}

Определение 3. Транспонированная матрица из алгебраических дополнений называется присоединенной матрицей: .

Теорема 2.

{При умножении k −ой строки А на k − ый столбец получается det(A) (*), при умножении на любой другой столбец получается ноль (**) }

Следствие.

Пример. Найти обратную матрицу для . {

.(проверка)}

Замечания. 1. Полезно запомнить, что обратная матрица второго порядка получается из исходной следующим образом: элементы главной диагонали меняются местами, у элементов второй диагонали изменяется знак. Полученная матрица делится на определитель.

2. Обратная матрица может быть получена с помощью элементарных преобразований. Для этого составляется матрица и левая часть элементарными преобразованиями приводится к единичной. При этом матрица Е преобразуется в обратную {б/д}. Последний пример:

; .

Свойства обратной матрицы.

1. { (св.7,8 §3) }

2.

3. {Из определения следует, что А и взаимно обратные матрицы.}

В заключение докажем критерий существования обратной матрицы:

Теорема 3. Обратная матрица существует тогда и только тогда, когда Аневырожденная матрица, т.е.

{1. Пусть существует. Т.к. она равна присоединенной матрице, деленной на определитель, то последний не равен нулю. 2. Пусть По Сл.Т.2 обратную матрицу можно вычислить.}

§7. Решение матричных уравнений.

Использование обратных матриц позволяет решать простые матричные уравнения относительно квадратных матриц. Рассмотрим пример одной из таких задач. Решить уравнение AXB + C = D, где − неизвестная матрица.

Матрица Х равна: Пользуясь замечанием 1 предыдущего параграфа, имеем:

Замечание. Так как умножение матриц не коммутативно, необходимо внимательно смотреть за тем, с какой стороны следует умножать правую часть на обратные матрицы.

§8. Системы линейных алгебраических уравнений (СЛАУ).

Определение 1. Система уравнений называется системой m

линейных алгебраических уравнений с n неизвестными (сокращенно СЛАУ).

Такая запись уравнений носит название координатной формы записи.

Более компактной записью является матричная форма. Нетрудно видеть, что левая часть системы представляет собой вектор, полученный умножением матрицы системы на вектор

неизвестных . В правой части получается вектор правых частей (оба вектора – столбцы). Использование этой закономерности позволяет записывать системы в более компактном виде:

матричная форма записи. В случае невырожденной квадратной матрицы решение

системы может быть записано в виде

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5366
Авторов
на СтудИзбе
412
Средний доход
с одного платного файла
Обучение Подробнее