151160 (Электродинамические усилия в электрических аппаратах)

2016-07-29СтудИзба

Описание файла

Документ из архива "Электродинамические усилия в электрических аппаратах", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "контрольные работы и аттестации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151160"

Текст из документа "151160"

Электродинамические усилия в электрических аппаратах

Содержание

1. Основные понятия 2

Возникновение электродинамических сил 2

Направление действия силы 3

2. Методы расчета электродинамических сил 4

Первый метод 4

Второй метод 6

3. Электродинамические силы между параллельными проводниками 8

Бесконечной длины 8

Конечной длины 9

Неравной длины 10

4. Электродинамические силы между взаимно перпендикулярными проводниками 15

5. Электродинамические силы в кольцевом витке и между кольцевыми витками 17

Для одного витка 17

Для нескольких витков 18

6. Электродинамические силы в проводниках переменного сечения 20

7. Силы взаимодействия между проводником с током и ферромагнитной массой 21

Вблизи ферромагнитной массы 21

Внутри ферромагнитной массы 22

8. Электродинамические силы при переменном токе 24

При однофазном токе 24

При расположении проводников в одной плоскости 26

При расположении проводников правильным треугольником 28


1. Основные понятия

Действие электродинамических сил на аппараты

При нормальных эксплуатационных условиях электродинамические силы, как правило, малы и не вызывают каких-либо деформаций, а тем более поломок деталей в аппаратах. Однако при коротких замыканиях эти силы достигают весьма больших значений и могут вызвать деформацию или разрушение не только отдельных деталей, но и всего аппарата. Это обстоятельство требует проведения расчета аппарата (или отдельных его узлов) на электродинамическую устойчивость, т.е. на способность выдержать без повреждений прохождение наибольшего возможного в эксплуатационных условиях (или заданного) тока короткого замыкания. Такой расчет тем более необходим ввиду того, что с целью получения минимальных габаритов в аппаратах стремятся располагать токоведущие части как можно ближе друг к другу.

Так как переменный ток при отсутствии апериодической составляющей отличается от постоянного изменением силы тока и направлением изменяющихся по синусоидальному закону, то и электродинамическая сила будет иметь переменное значение.

Для упрощения рассмотрим электродинамические силы, возникающие в различных частях электрического аппарата при постоянном токе. Далее, оценим их влияние на электрический аппарат в различных ситуациях при трехфазном переменном токе.

Возникновение электродинамических сил

Обтекаемый током i прямолинейный проводник длиной l (рис. 1), расположенный в магнитном поле с индукцией В, испытывает механическую силу

(1)

где β- угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Рис. 1.

Для системы из нескольких обтекаемых током проводников можно всегда представить, что любой из этих проводников расположен в магнитном поле, созданном токами других проводников, и соответствующим образом взаимодействует с этим полем, т. е. между проводниками, охваченными общим магнитным потоком, всегда возникают механические силы. Эти силы называются электродинамическими.

Аналогичные силы возникают между проводником, обтекаемым током, и ферромагнитной массой.

Направление действия силы

Направление действия силы определяется «правилом левой руки».

Направление действия силы может быть также определено из следующего общего положения: силы, действующие в контуре с током, стремятся изменить конфигурацию контура так, чтобы охватываемый контуром магнитный поток увеличился.

Удобным для определения направления действия электродинамической силы является метод, предложенный академиком В.Ф. Миткевичем, основанный на представлении бокового распора и тяжения магнитных линий.

Рисуют и накладывают друг на друга картины магнитных полей, создаваемых током каждого из проводников. Благодаря боковому распору магнитных силовых линий сила, действующая на проводник, направлена в сторону, где поле ослаблено (рис. 2).

2. Методы расчета электродинамических сил

Расчет электродинамических сил ведется обычно либо на основании закона взаимодействия проводника с током и магнитным полем (первый метод), либо по изменению запаса магнитной энергии системы (второй метод).

Первый метод

Расчет электродинамических сил на основании закона взаимодействия проводника с током и магнитным полем. Возьмем систему из двух произвольно расположенных проводников 1 и 2 (рис. 3), обтекаемых токами i1 и i2. Напряженность магнитного поля, создаваемого элементом dy проводника 2 в месте расположения элемента dx проводника 1, будет

(2)

где α — угол между вектором ρ и направлением тока по элементу dy.

Весь проводник 2 создает в месте расположения элемента dx напряженность магнитного поля

(3)

Элементарная сила, действующая на элемент dx, обтекаемый током i1

(4)

где ρ — угол между вектором магнитной индукции В = μ0Hdx и вектором тока i1;

μ0 магнитная проницаемость воздуха.

Полную силу F взаимодействия между проводниками 1 и 2 получим после интегрирования dFdx по всей длине проводника 1:

(5)

Считая токи i1 и i2 неизменными по всей длине проводника, уравнение (5) можно переписать в виде произведения членов:

(6)

Первый член этого выражения зависит только от значений токов. Второй член зависит только от взаимного геометрического расположения проводников и представляет собой безразмерную величину. Эту величину часто называют коэффициентом контура, который обозначим буквой с. Тогда

(7)

т.е. сила взаимодействия между двумя проводниками, обтекаемыми токами i1 и i2, пропорциональна произведению этих токов (квадрату тока при i1 = i2) и зависит от геометрии проводников.

Подставив в уравнение (7) значение μ0 = 4π10-7 и вычисляя силу в ньютонах, получим

(8)

Второй метод

Расчет электродинамических сил по изменению запаса электромагнитной энергии контуров. Электромагнитное поле вокруг проводников и контуров с током обладает определенным запасом энергии. Электромагнитная энергия контура, обтекаемого током i,

(9)

Электромагнитная энергия двух контуров, обтекаемых токами i1 и i2,

(10)

где L1,L2индуктивности контуров; М — взаимная индуктивность контуров.

Всякая деформация контура (изменение расположения отдельных его элементов или частей) или изменение взаиморасположения контуров приводят к изменению запаса электромагнитной энергии. При этом работа сил в любой системе равна изменению запаса энергии этой системы:

(11)

здесь dWизменение запаса энергии системы при деформации системы в направлении х под действием силы F.

На указанном законе (11) и основан второй метод определения электродинамических сил в контурах. Электродинамическая сила в контуре или между контурами, действующая в направлении х, равна скорости изменения запаса энергии системы при деформации ее в том же направлении:

(12)

Согласно сказанному электродинамическая сила в контуре, обтекаемом током i,

(13)

а электродинамическая сила между двумя взаимосвязанными контурами с токами i1 и i2 будет

(14)

3. Электродинамические силы между параллельными проводниками


Бесконечной длины

Возьмем два параллельных круглых проводника 1 и 2 (рис. 4), расположенных в одной плоскости на расстоянии друг от друга и обтекаемых токами i1 и i2. Расчет будем производить первым методом. Проделав все операции аналогично выражениям (2) — (8) и учитывая, что sin β = 1, так как проводники расположены в одной плоскости, и вектор индукции в данном случае перпендикулярен этой плоскости (β=90°), получим

, (15)

где

Выразим подынтегральные переменные второго интеграла через одну из переменных, а именно через угол α. Примем за начало координат элемент dy и направление токов, совпадающее с положительным направлением координат. В этом случае текущая координата

( 16)

Подставив полученные выражения в уравнение (15) и считая, что проводник 2 распространяется от — ∞ до + ∞, чему соответствует изменение угла α от π до 0, получим

(17)

Очевидно, если проводник 1 (l1), так же как и проводник 2, распространяется до ±∞, то с будет стремиться к бесконечности.

Конечной длины

Если проводник 1 имеет конечную длину, то

(18)

Согласно выражению (8) сила, действующая на проводник 1, равна

(19)

Уравнение (19) определяет силу взаимодействия между двумя проводниками, один из которых бесконечно длинен, а второй имеет конечную длину l и расположен симметрично относительно первого. В случае, когда оба проводника будут иметь конечную длину l, пределы интегрирования для выражения (17) будут уже не от π до 0, а от α 2 до α 1 (см. штриховые линии на рис. 4) и сила взаимодействия между двумя круглыми проводниками конечной и равной длины определится уравнением

. (20)

В уравнении (20) множитель перед скобками представляет собой силу взаимодействия между двумя проводниками, один из которых имеет бесконечную длину. Обозначим эту силу через F. Коэффициент, заключенный в скобках, представляет собой величину, меньшую единицы. При α/1<0,2 (в практике, как правило, α/1<< 0,2) величиной (α/l)2 по отношению к единице можно пренебречь. Тогда уравнение (20) примет вид (21)

(21)

Неравной длины

В практике весьма часто проводники имеют неравную длину. Силу взаимодействия между такими проводниками можно найти изложенным выше способом, производя интегрирование каждый раз в соответствующих пределах. Можно эту задачу решить, применив уравнение (20).

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее