125975 (Компрессорные и насосные установки)

2016-07-29СтудИзба

Описание файла

Документ из архива "Компрессорные и насосные установки", который расположен в категории "". Всё это находится в предмете "промышленность, производство" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "контрольные работы и аттестации", в предмете "промышленность, производство" в общих файлах.

Онлайн просмотр документа "125975"

Текст из документа "125975"

Опишите конструкцию узлов и деталей центробежного компрессора, корпуса, рабочего колеса, устройств для восприятия осевого усилия, направляющих аппаратов и обратных канатов

Компрессоры – это устройства для создания направленного потока газа под давлением. Компрессорные установки довольно сильно распространены, они широко используются в холодильных установках, в пневматических устройствах, а также в контрольно-измерительной аппаратуре.

Компрессоры, упрощенно, состоят:

- Электродвигателя или привода;

- Нагнетающей установки;

- Емкостей для сжатого газа;

- Соединительных шлангов и труб. Центробежный компрессор в основном состоит из корпуса и ротора, имеющего вал с симметрично расположенными рабочими колёсами. Центробежный 6-ти ступенчатый компрессор разделён на три секции и оборудован двумя промежуточными холодильниками, из которых газ поступает в каналы. Во время работы центробежного компрессора частицам газа, находящимся между лопатками рабочего колеса, сообщается вращательное движение, благодаря чему на них действуют центробежные силы. Под действием этих сил газ перемещается от оси компрессора к периферии рабочего колеса, претерпевает сжатие и приобретает скорость.

Конструкцию холодильного компрессора рассмотрим на примере фреонового двухступенчатого компрессора ТКФ-248 (холодильная машина ХТММФ-248-4000).

Корпус (статор) компрессора литой, чугунный, состоит из двух половин — верхней и нижней, соединенных шпильками. Их взаимное положение фиксируется коническими штифтами. Для облегчения подъема в верхней половине предусмотрены отжимные болты уплотнение горизонтального разъема между половинами корпуса осуществляется паронитовой прокладкой толщиной 0,6 мм, проваренной в глицерине.

Корпус, установленный на литой фундаментной плите, при нагреве имеет возможность перемещения по шпонке. В корпусе предусмотрены отверстия для подвода слива масла, а также для присоединения уравнительных линий. Для подъема и транспортировки компрессора на нижней половине корпуса имеются грузовые крюки (приливы).

Ротор (вращающаяся часть турбокомпрессора) состоит из вала, на котором закреплены два рабочих колеса и разгрузочный поршень (думмис). Ротор - одна из наиболее ответственных частей компрессора. Его детали испытывают сложные напряжения, вызываемые центробежными силами, крутящим моментом, знакопеременными нагрузками, вибрацией, температурной деформацией. Все узлы и детали ротора изготавливают из высококачественной углеродистой или легированной стали. Каждое колесо подвергается статической балансировке и разгонным испытаниям, а ротор в сборе — динамической балансировке. Насадка рабочих колес на вал осуществляется по горячей посадке на шпонке.

Усилия, действующие на каждое колесо в осевом направлении, не уравновешены. Это вызвано тем, что на кольцевую поверхность колеса со стороны входа пара действует давление всасывания, а на соответствующую ей поверхность с противоположной стороны — давление нагнетания. В результате создается осевая сила, которая стремится сдвинуть ротор в сторону всасывания.

Для уменьшения действия осевых сил используют разгрузочный поршень (думмис). Со стороны колеса на думмис действует конечное давление нагнетания, а с противоположной стороны — давление всасывания. При этом возникает результирующая сила, стремящаяся подвинуть ротор в сторону нагнетания. Она уравновешивает осевую силу, действующую на колесо в результате увеличения давления при сжатии пара.

Межступенчатые (лабиринтные) уплотнения применяют гребенчатого типа. Они бывают концевыми и промежуточными. Концевые уплотнения препятствуют переточкам пара в подшипниковые камеры, а промежуточные — из одной ступени в другую, минуя проточную часть. В зависимости от типа уплотнений зазоры составляют от 0,1 до 0,35 мм.

Торцовые уплотнения (сальники) применяют двух типов: для герметизации выходного конца вала ротора и выходного конца вала маслонасоса системы смазки.

Торцовое уплотнение вала ротора представляет собой систему подвижных и неподвижных элементов, обеспечивающих подвижное уплотнение выходного конца вала ротора как при работе, так и при стоянке компрессора. В полости уплотнения циркулирует масло, обеспечивая гидравлический затвор, смазку, трущихся поверхностей и их охлаждение.

Масло в полость сальника подводится в верхнюю часть корпуса от системы смазки. Слив масла производят через зазор в плавающем подшипнике.

Входной направляющий аппарат служит для плавного регулирования производительности. Он состоит из лопаток, которые могут поворачиваться в корпусе с помощью приводного механизма. На хвостовиках лопаток закреплены шестерни, находящиеся в зацеплении с общей конической шестерней, посредством которой поворачиваются лопатки. Приводной валик механизма уплотнен в корпусе сальником, состоящим из резиновых колец, поджатых резьбовой втулкой. Изменением угла установки лопаток изменяют производительность компрессора от 100 до 30% номинального значения.

Компрессор имеет две уравнительные линии: уравновешивающую давление в масляных полостях компрессора и маслобака с давлением всасывания и уравновешивающую давление за думмисом с давлением всасывания. Первая линия служит для предотвращения уноса масла из маслоблока и подшипниковых полостей в испаритель, вторая — для уменьшения осевой силы, действующей на ротор.

Ротор вращается в двух подшипниках, один из которых опорный, другой — опорно-упорный. Корпуса подшипников посредством крышек прикреплены к корпусу компрессора.

Опорные подшипники воспринимают вес ротора и динамические переменные усилия, а также фиксируют положение ротора относительно корпуса в радиальном положении. Подшипник состоит из корпуса и вкладыша с заливкой из баббита Б-83. Масло подается в нижнюю часть подшипника через дроссельную шайбу.

Положение вкладыша в подшипнике и положение ротора относительно корпуса регулируется в радиальном направлении с помощью прокладок, устанавливаемых под опорными сухарями (подушками), прикрепленными к нижнему и верхнему вкладышам.

Опорно-упорный подшипник состоит из опорной и упорной частей. Конструкция опорной части аналогична конструкции опорного подшипника. Упорная часть подшипника служит для восприятия части осевого усилия (за вычетом усилия, воспринимаемого думмисом), она — двусторонняя с шестью упорными колодками с каждой стороны. Колодки упираются в корпус подшипника через дистанционное кольцо, с помощью которого выдерживается необходимый осевой зазор между колодками и упорным диском. Упорная часть колодок залита баббитом Б-83.

Опишите назначение, принцип работы и конструктивное устройство центробежных вентиляторов. Вычертите схемы отдельных узлов

Центробежные вентиляторы широко распространены в промышленности и коммунальном хозяйстве для вентиляции зданий и отсасывания вредных веществ в технологических процессах.

В теплоэнергетических установках центробежные вентиляторы применяются для подачи воздуха в топочные камеры котлов, перемещения топливных смесей в системах пылеприготовления, отсасывания дымовых газов и выброса их в атмосферу. Воздух в вентилятор поступает через входной патрубок 1 и направляется в рабочее колесо 2, которое состоит из: ступицы 5, ведущего диска 7, лопастей и (ведомого) покрывного кольцевого диска 9. Обычно рабочее колесо приводится во вращение при помощи ступицы 5, насаженной на рабочий вал 6, который передает движение непосредственно от двигателя или с помощью трансмиссионной передачи. На ступице смонтирован ведущий диск, к которому прикреплены лопасти рабочего колеса. Со стороны входа на лопастях рабочего колеса крепится покрывной кольцевой диск 9

Вращающееся рабочее колесо помещается в неподвижный спиральный кожух 8, имеющий на выходе расширяющийся патрубок 4. Воздух или газ, попадающий через входной патрубок 1 в рабочее колесо 2, лопастями отбрасывается с большой скоростью к периферии. Передача энергии воздуху завершается в рабочем колесе. Часть этой энергии вследствие силового воздействия лопастей рабочего колеса получается в виде потенциальной энергии давления. Другая часть, в зависимости от степени реактивности рабочего колеса, получается в виде кинетической энергии (скоростного напора).

Конструктивное устройство центробежного вентилятора простейшего типа показано на рис. 1.

Рис. 1 – Центробежный вентилятор

1 – ступица; 2 – основной диск; 3 – рабочие лопатки; 4 – передний диск; 5 – лопастная решетка; 6 – корпус; 7 – шкив; 8 – подшипники; 9 – станина; 10, 11 – фланцы

Рабочее колесо вентилятора состоит из литой ступицы 7, жестко сопряженной с основным диском 2. Рабочие лопатки 3 крепятся к основному диску 2 и переднему диску 4, обеспечивающему необходимую жесткость лопастной решетки 5. Корпус 6 вентилятора крепится к литой или сварной станине 9, на которой располагаются подшипники 8, несущие вал вентилятора с посаженным на него рабочим колесом. На корпусе вентилятора установлены фланцы 10 и 11 для крепления всасывающей и напорной труб.

Центробежные вентиляторы выпускаются заводами в определенных геометрических сериях. Каждая серия характеризуется постоянством отношений сходственных размеров; размеры отдельных машин и их рабочие параметры в серии различны.

Обозначение центробежных вентиляторов в соответствии с государственными стандартами включает букву Ц, указывающую на основной признак типа – центробежный, пятикратное значение коэффициента полного давления в режиме при max, округленное до целого числа, и значение коэффициента быстроходности в режиме max, также округленное до целого числа. Обозначение вентилятора включает и его номер, представляющий собой значение диаметра D2, выраженное в дециметрах. Например, центробежный вентилятор с диаметром рабочего колеса 400 мм, имеющий при максимальном КПД коэффициент полного давления 0,86 и быстроходность 70, обозначается Ц4–70–4.

Характерной конструктивной величиной центробежного вентилятора является отношение выходного и входного диаметров межлопастных каналов рабочего колеса D2/D1. В обычных конструкциях это отношение выбирается небольшим (1,2–1,45), радиальная длина лопасти составляет (0,084–0,16)D2.

Теоретический напор вентилятора определяется по уравнению Эйлера, которое с учетом радиального входа потока (c1u = 0) можно записать в следующем виде:

Нт = u2c2u/g

Отсюда теоретическое давление вентилятора:

рт = u2с2u,

где – средняя плотность перемещаемого газа, кг/м3.

В реальном вентиляторе часть давления теряется в проточной части.

Если поток газа на входе в вентилятор имеет параметры p1ст и с1, а на выходе р2ст и с2, то полное давление, развиваемое вентилятором:

где – статическое давление потока соответственно на выходе и входе

вентилятора, Па;

с1, с2 – соответствующие скорости потока, м/с.

Работа вентилятора при заданной частоте вращения характеризуется объемной подачей Q, полным давлением р, мощностью N и полным КПД .

Полезная мощность (Вт) вентилятора определяется по формуле:

Nпол = р·Q,

где Q – объемная подача (производительность) вентилятора, м3/с.

Мощность на валу (эффективная мощность) N обычно определяется при испытании вентилятора.

Вентиляторы характеризуются двумя КПД: полным и статическим, так как в некоторых случаях для вентиляторов характерно не полное давление, ими развиваемое, а лишь статическая часть его рст или соответственно статический напор Нст.

Статический КПД дополняет оценку эффективности вентилятора, так как в полной энергии, сообщаемой потоку газа, существенную долю составляет кинетическая энергия. Ориентировочно ст меньше на 20–30 %.

Мощность двигателя для привода вентилятора (кВт) выбирают с запасом на возможные отклонения рабочего режима от расчетного:

где – полный КПД вентилятора;

– КПД передачи.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее