86186 (Основы математического анализа)

2016-07-29СтудИзба

Описание файла

Документ из архива "Основы математического анализа", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "контрольные работы и аттестации", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86186"

Текст из документа "86186"

1. Множества и операции над множествами

Напомним основные обозначения, понятия, относящиеся к множествам, которых будем придерживаться дальше.

Начнем с основного понятия, которое встречается практически в каждом разделе математики - это понятие множества.

Множество - это совокупность, набор элементов, объединенных общими свойствами.

Множества обозначаются заглавными латинскими буквами , а элементы множества строчными латинскими буквами .

Запись означает, что есть множество с элементами , которые связаны между собой какой-то функцией .

Замечание. Элементы в множество входят по одному разу, т.е. без повторений.

Основные операции:

  1. Принадлежность элемента множеству:

где -- элемент и -- множество (элемент принадлежит множеству ).

  1. Непринадлежность элемента множеству:



где -- элемент и -- множество (элемент не принадлежит множеству ).

  1. Объединение множеств: .

Объединением двух множеств и называется множество , которое состоит из элементов множеств и , т.е.

или

  1. Пересечение множеств: .

Пересечением двух множеств и называется множество , которое состоит из общих элементов множеств и , т.е.

и

  1. Разность множеств: .

Разностью двух множеств и , например, множество минус множество , называется множество , которое состоит из элементов множества , которых нет в множестве , т.е.

и

  1. Симметрическая разность множеств:

.



Симметрической разностью двух множеств и называется множество , которое состоит из не общих элементов множеств и , т.е.

  1. Дополнение множества: .

Если предположим, что множество является подмножеством некоторого универсального множества , тогда определяется операция дополнения:

и

  1. Вхождение одного множества в другое множество: .

Если любой элемент множества является элементом множества , то говорят, что множество есть подмножество множества (множество входит в множество ).

  1. Не вхождение одного множества в другое множество: .

Если существует элемент множества , который не является элементом множества , то говорят, что множество не подмножество множества (множество не входит в множество ).

2. Первая и вторая теорема Вейерштрасса

Теорема (первая теорема Вейерштрасса) Если функция непрерывна на сегменте, то она ограничена на нем. Доказательство: методом от противного, воспользуемся свойством замкнутости сегмента [a;b]. Из любой последовательности (xn) этого сегмента можем выделить подпоследовательность xnk , сходящуюся к x0∈[a;b] . Пусть f не ограничена на сегменте [a;b], например, сверху, тогда для всякого натуральногоnN найдется точка xn∈[a;b] , что f(xn)>n. Придавая n значения 1,2,3,{\ldots}, мы получим последовательность (xn) точек сегмента [a;b], для которых выполнено свойство f(x1)>1,f(x2)>2,f(x3)>3,...,f(xn)>n... Последовательность (xn) ограничена и поэтому из нее по теореме можно выделить подпоследовательность(xnk) , которая сходится к точке x0∈[a;b] : limk→∞xnk=x0 (1) Рассмотрим соответствующую последовательность (f(xnk)) . С одной стороны f(xnk)>nk и поэтому limk→∞f(xnk)=+∞ (2), С другой стороны, учитывая определение непрерывной функции по Гейне из (1) будем иметь limk→∞f(xnk)=f(x0) (3) Получаем равенства (2) и (3) противоречат теореме (о единственности предела). Это противоречие и доказывает справедливость теоремы. Аналогично доказывается ограниченность функции снизу. Ч.Т.Д.

Замечание 1 Таким образом, если f непрерывна на [a;b], то ее множество значений ограничено и поэтому существует конечные верхняя и нижняя грань функции. c=infx∈[a;b]f(x),d=supx∈[a;b]f(x), но открыт вопрос о достижении функции своих граней. Замечание 2 Если слово сегмент в условии теоремы заменить словом интервал или полуинтервал, то теорема может и нарушиться. Пример, y=tgx,tgxC((−2π;2π)) , но функция не ограничена на этом интервале.

Теорема (вторая теорема Вейерштрасса) Если функция непрерывна на сегменте, то она достигает на нем своих граней (т.е. непрерывная на сегменте функция принимает свое наибольшее и наименьшее значения). Доказательство: Пусть f(x)∈C([a;b]) , c=infx∈[a;b]f(x), d=supx∈[a;b]f(x). По первой теореме Вейерштрасса c,dR . Докажем, что f достигает на [a;b] своих граней, т.е. найдутся такие точки x1,x2∈[a;b] , чтоf(x1)=c,f(x2)=d. Докажем, например, существование точки x2.

По определению верхней грани имеем (∀x∈[a;b])(f(x)=d) . Предположим противное, т.е. точки x2, в которой f(x2)=dна [a;b], тогда на [a;b] выполняется условиеf(x)<d или df(x)>0 . Далее введем вспомогательную функцию ϕ(x)=1df(x). ϕ(x)на [a;b] положительна и непрерывна (как отношение двух непрерывных на [a;b] функций и df(x)/=0) , поэтому по первой Т. Вейерштрасса ϕ(x)на [a;b] ограничена. Это означает, что при некотором М>0 (∀x∈[a;b])(0<1df(x)≤M) , отсюда имеем f(x)≤d−1M<d . Полученное неравенство противоречит тому, что d является верхней гранью функции f(x) на [a;b], т.е. наименьшим из верхних границ. Полученное противоречие и означает существование точки x2 такой, что f(x2)=d.

Аналогично доказывается существование точки x1∈[a;b] , такой что f(x1)=c.

Следствие Если f непрерывна и непостоянна на [a;b], то образ этого отрезка [a;b] при отображении f будет так же отрезок, т.е. непрерывный непостоянный образ отрезка есть отрезок. Доказательство: В самом деле образом отрезка [a;b] при отображении f будет отрезок [с;d], где c=inf[a;b]f(x)=min[a;b]f(x), а d=sup[a;b]f(x)=max[a;b]f(x), что следует из второй теоремы Больцано-Коши и второй теоремы Вейерштрасса Ч.Т.Д.

3. Теорема Ферма и Ролля

Пусть функция f(x) имеет на множестве E точку экстремума x₀?E, причём множество E содержит некоторую β- окрестность, что E=(x- β;x+ β) точки x. Тогда либо f(x) имеет в точке x производную, равную 0, то есть f´(x)=0 , либо производная в точке x не существует. Теорема Ролля Если функция f(x) непрерывна на отрезке (a;b), дифференцируема во всех внутренних точках этого отрезка и на концах x=a и x=b обращается в нуль, [f(a)=f(b)=0], то внутри отрезка (a;b) существует п окрпйней мере одна тоска x=c, a

Метод математической индукции

Метод математической индукции является важным способом доказательства предложений (утверждений), зависящих от натурального аргумента.

Метод математической индукции состоит в следующем:

Предложение (утверждение) P(n), зависящее от натурального числа n, справедливо для любого натурального n если:

  1. P(1) является истинным предложением (утверждением);

  2. P(n) остается истинным предложением (утверждением), если n увеличить на единицу, то есть P(n + 1) - истинное предложение (утверждение).

Таким образом метод математической индукции предполагает два этапа:

  1. Этап проверки: проверяется, истинно ли предложение (утверждение) P(1).

  2. Этап доказательства: предполагается, что предложение P(n) истинно, и доказывается истинность предложения P(n + 1) (n увеличено на единицу).

Замечание 1. В некоторых случаях метод математической индукции используется в следующей форме:

Пусть m - натуральное число, m > 1 и P(n) - предложение, зависящее от n, n ≥ m.

Если

  1. P(m) справедливо;

  2. P(n) будучи истинным предложением, влечет истинность предложения P(n + 1) для любого натурального n, n ≥ m, тогда P(n) - истинное предложение для любого натурального n, n ≥ m.

В дальнейшем рассмотрим примеры применения метода математической индукции.

Пример 1. Доказать следующие равенства

g) формула бинома Ньютона:

где n Î N.

Решение. a) При n = 1 равенство примет вид 1=1, следовательно, P(1) истинно. Предположим, что данное равенство справедливо, то есть, имеет место

.

Следует проверить (доказать), что P(n + 1), то есть



истинно. Поскольку (используется предположение индукции)

получим

то есть, P(n + 1) - истинное утверждение.

Таким образом, согласно методу математической индукции, исходное равенство справедливо для любого натурального n.

Замечание 2. Этот пример можно было решить и иначе. Действительно, сумма 1 + 2 + 3 + ... + n есть сумма первых n членов арифметической прогрессии с первым членом a1 = 1 и разностью d = 1. В силу известной формулы , получим

b) При n = 1 равенство примет вид: 2·1 - 1 = 12 или 1=1, то есть, P(1) истинно. Допустим, что имеет место равенство

1 + 3 + 5 + ... + (2n - 1) = n2

и докажем, что имеет место P(n + 1):

1 + 3 + 5 + ... + (2n - 1) + (2(n + 1) - 1) = (n + 1)2



или

1 + 3 + 5 + ... + (2n - 1) + (2n + 1) = (n + 1)2.

Используя предположение индукции, получим

1 + 3 + 5 + ... + (2n - 1) + (2n + 1) = n2 + (2n + 1) = (n + 1)2.

Таким образом, P(n + 1) истинно и, следовательно, требуемое равенство доказано.

Замечание 3. Этот пример можно решить (аналогично предыдущему) без использования метода математической индукции.

c) При n = 1 равенство истинно: 1=1. Допустим, что истинно равенство

и покажем, что

то есть истинность P(n) влечет истинность P(n + 1). Действительно,

и, так как 2n2 + 7n + 6 = (2n + 3)(n + 2), получим



и, следовательно, исходное равенство справедливо для любого натурального n.

d) При n = 1 равенство справедливо: 1=1. Допустим, что имеет место

и докажем, что

Действительно,

e) Утверждение P(1) справедливо: 2=2. Допустим, что равенство

справедливо, и докажем, что оно влечет равенство



Действительно,

Следовательно, исходное равенство имеет место для любого натурального n.

f) P(1) справедливо: 1/3 = 1/3. Пусть имеет место равенство P(n):

.

Покажем, что последнее равенство влечет следующее:

Действительно, учитывая, что P(n) имеет место, получим

Таким образом, равенство доказано.

g) При n = 1 имеем a + b = b + a и, следовательно, равенство справедливо.



Пусть формула бинома Ньютона справедлива при n = k, то есть,

Тогда

Используя равенство получим

Пример 2. Доказать неравенства

a) неравенство Бернулли: (1 + )n ≥ 1 + n,  > -1, n  N.

b) x1 + x2 + ... + xn ≥ n, если x1x2· ... ·xn = 1 и xi > 0, .

c) неравенство Коши относительно среднего арифемтического и среднего геометрического

где xi > 0, , n ≥ 2.

d) sin2na + cos2na ≤ 1, n Î N.

e)

f) 2n > n3, n Î N, n ≥ 10.

Решение. a) При n = 1 получаем истинное неравенство



1 + a ≥ 1 + a.

Предположим, что имеет место неравенство

(1 + a)n ≥ 1 + na (1)

и покажем, что тогда имеет место и

(1 + a)n + 1 ≥ 1 + (n + 1)a.

Действительно, поскольку a > -1 влечет a + 1 > 0, то умножая обе части неравенства (1) на (a + 1), получим

(1 + a)n(1 + a) ≥ (1 + na)(1 + a)

или

(1 + a)n + 1 ≥ 1 + (n + 1)a + na2

Поскольку na2 ≥ 0, следовательно,

(1 + a)n + 1 ≥ 1 + (n + 1)a + na2 ≥ 1 + (n + 1)a.

Таким образом, если P(n) истинно, то и P(n + 1) истинно, следовательно, согласно принципу математической индукции, неравенство Бернулли справедливо.

b) При n = 1 получим x1 = 1 и, следовательно, x1 ≥ 1 то есть P(1) - справедливое утверждение. Предположим, что P(n) истинно, то есть, если adica, x1,x2,...,xn - n положительных чисел, произведение которых равно единице, x1x2·...·xn = 1, и x1 + x2 + ... + xn ≥ n.

Покажем, что это предложение влечет истинность следующего: если x1,x2,...,xn,xn+1 - (n + 1) положительных чисел, таких, что x1x2·...·xn·xn+1 = 1, тогда x1 + x2 + ... + xn + xn + 1 ≥ n + 1.

Рассмотрим следующие два случая:

1) x1 = x2 = ... = xn = xn+1 = 1. Тогда сумма этих чисел равна (n + 1), и требуемое неравество выполняется;

2) хотя бы одно число отлично от единицы, пусть, например, больше единицы. Тогда, поскольку x1x2· ... ·xn·xn + 1 = 1, существует еще хотя бы одно число, отличное от единицы (точнее, меньше единицы). Пусть xn + 1 > 1 и xn < 1. Рассмотрим n положительных чисел

x1,x2,...,xn-1,(xn·xn+1).

Произведение этих чисел равно единице, и, согласно гипотезе,

x1 + x2 + ... + xn-1 + xnxn + 1 ≥ n.

Последнее неравенство переписывается следующим образом:

x1 + x2 + ... + xn-1 + xnxn+1 + xn + xn+1 ≥ n + xn + xn+1

или

x1 + x2 + ... + xn-1 + xn + xn+1 ≥ n + xn + xn+1 - xnxn+1.

Поскольку



(1 - xn)(xn+1 - 1) > 0,

n + xn + xn+1 - xnxn+1 = n + 1 + xn+1(1 - xn) - 1 + xn = = n + 1 + xn+1(1 - xn) - (1 - xn) = n + 1 + (1 - xn)(xn+1 - 1) ≥ n + 1.

Следовательно,

x1 + x2 + ... + xn + xn+1 ≥ n+1,

то есть, если P(n) справедливо, то и P(n + 1) справедливо. Неравенство доказано.

Замечание 4. Знак равенства имеет место тогда и только тогда, когда x1 = x2 = ... = xn = 1.

c) Пусть x1,x2,...,xn - произвольные положительные числа. Рассмотрим следующие n положительных чисел:

Поскольку их произведение равно единице:

согласно ранее доказанному неравенству b), следует, что

откуда



Замечание 5. Равенство выполняется если и только если x1 = x2 = ... = xn.

d) P(1) - справедливое утверждение: sin2a + cos2a = 1. Предположим, что P(n) - истинное утверждение:

sin2na + cos2na ≤ 1

и покажем, что имеет место P(n + 1). Действительно,

sin2(n + 1)a + cos2(n + 1)a = sin2na·sin2a + cos2na·cos2a < sin2na + cos2na ≤ 1

(если sin2a ≤ 1, то cos2a < 1, и обратно: если cos2a ≤ 1, то sin2a < 1). Таким образом, для любого n Î N sin2na + cos2n ≤ 1 и знак равенства достигается лишь при n = 1.

e) При n = 1 утверждение справедливо: 1 < 3/2.

Допустим, что и докажем, что

Поскольку

учитывая P(n), получим



f) Учитывая замечание 1, проверим P(10): 210 > 103, 1024 > 1000, следовательно, для n = 10 утверждение справедливо. Предположим, что 2n > n3 (n > 10) и докажем P(n + 1), то есть 2n+1 > (n + 1)3.

Поскольку при n > 10 имеем или , следует, что

2n3 > n3 + 3n2 + 3n + 1 или n3 > 3n2 + 3n + 1.

Учитывая неравенство (2n > n3), получим

2n+1 = 2n·2 = 2n + 2n > n3 + n3 > n3 + 3n2 + 3n + 1 = (n + 1)3.

Таким образом, согласно методу математической индукции, для любого натурального n Î N, n ≥ 10 имеем 2n > n3.

Пример 3. Доказать, что для любого n Î N

a) n(2n2 - 3n + 1) делится на 6,

b) 62n-2 + 3n+1 + 3n-1 делится на 11.

Решение. a) P(1) - истинное утверждение (0 делится на 6). Пусть P(n) справедливо, то есть n(2n2 - 3n + 1) = n(n - 1)(2n - 1) делится на 6. Покажем, что тогда имеет место P(n + 1), то есть, (n + 1)n(2n + 1) делится на 6. Действительно, поскольку

n(n + 1)(2n + 1) = n(n - 1 + 2)(2n - 1 + 2) = (n(n - 1) + 2n)(2n - 1 + 2) =

= n(n - 1)(2n - 1) + 2n(n - 1) + 2n(2n + 1) = n(n - 1)(2n - 1) + 2n·3n =

= n(n - 1)(2n - 1) + 6n2



и, как n(n - 1)(2n - 1), так и 6n2 делятся на 6, тогда и их сумма n(n + 1)(2n + 1) делится 6.

Таким образом, P(n + 1) - справедливое утверждение, и, следовательно, n(2n2 - 3n + 1) делится на 6 для любого n  N.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее