Краткий_Курс, страница 2

2020-08-19СтудИзба

Описание файла

Документ из архива "Краткий_Курс", который расположен в категории "". Всё это находится в предмете "параллельная обработка данных" из 9 семестр (1 семестр магистратуры), которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Онлайн просмотр документа "Краткий_Курс"

Текст 2 страницы из документа "Краткий_Курс"

Потоковая архитектура (data-flow) вычислительных систем обеспечивает интерпретацию алгоритмов на графах, управляемых данными. Идеи потоковой обработки информации, организации вычислений, управляемых потоками данных можно рассмотреть на примере организации ввода и суммирования трех чисел. Традиционная схема вычислений может быть представлена так: ввод (а); ввод (в); ввод (с); s = a+b; s = s+c;

Если ввод данных может быть производиться асинхронно, то организовать параллельное программирования данного алгоритма не просто. Параллельный алгоритм может быть записан в виде потока данных на графе:

ввод (а) ввод (в) ввод (с)

а+в а+с в+с

(в+с)+а (а+с)+в (а+в)+с

Здесь, начальные вершины - ввод, затем каждое введенное данное размножается на три и они передаются на вершины, обеспечивающие суммирование. Теперь, любом порядке поступления данных отсутствуют задержки вычислений для получения результата. Data-flow программы записываются в терминах графов. В вершинах графа находятся команды, состоящие, например, из оператора, двух операндов (для двуместных операций), возможно, литеральных, или шаблонов для заранее неизвестных данных и ссылки, определяющей команду - наследника и позицию аргумента в ней для результата. Для фрагмента программы, вычисляющего оператор: a=(b+1)*(b-c), команды могут иметь вид:

L1:(+(<b>) “1” L3/1)

L2:(-(<b>) (<c>) L3/2)

L3:(*( ) ( ) <a>)

Семантика выполнения команд следующая: операция команды Li выполняется, когда поступили все данные для их входных аргументов. Последний параметр у этих команд указывает кому и куда передавать полученные результаты (в примере это узел, команда L3, а - аргументы 1,2), в терминах графов содержит инструкцию для обмена данных.

5.1. Классическая архитектура потоковой ВС.

Основными компонентами потоковой ВС являются:

- память команд (ПК),

- селекторная (арбитражная) сеть,

- множество исполнительных (функциональных) устройств (ФУ),

- распределительная сеть.

_______________

|--------------->| ФУ |-----------------|

| | ______________| |

| |

селекторная сеть распределительная сеть

| ______________ |

|<---------------| ПК |-----------------|

|______________|

Память команд состоит из "ячеек" активной памяти, каждая из которых может содержать одну команду вида <метка>: <операция>,<операнд1>,..,<операндК>,<адр_рез1>,..,<адр. _рез.М>, где адреса результатов являются адресами ячеек памяти. С каждой командой связан подсчитывающий элемент, непрерывно ожидающий прибытие аргументов, который пересылает команду на выполнение при наличии полного комплекта аргументов. Активных характер памяти заключается в том, что ячейка, обладающая полным набором операндов, переходит в возбужденное состояние и передает в селекторную сеть информационный пакет, содержащий необходимую числовую и связующую информацию о команде.

Селекторная сеть обеспечивает маршрут от каждой командной ячейки к выбранному, в соответствии с кодом операции, исполнительному (функциональному) устройству из множества устройств. Пакет поступает на одно из исполнительных устройств, где соответствующая операция выполняется и результат подается в распределительную сеть.

Распределительная сеть обрабатывает результирующий пакет, состоящий из результатов вычислений и адресов назначения. В зависимости от содержимого пакета, результат вычислений поступает в соответствующие ячейки памяти команд, создавая, тем самым, условия возможности их активизации.

Потоковая архитектура (data-flow), как одна из альтернатив фон-Нейманновской, обладает следующими характерными чертами:

- отсутствие памяти как пассивного устройства, хранящего потребляемую информацию,

- отсутствие счетчика команд (и, следовательно, последовательной обработки команд программы, разветвлений по условию и т.д.).

Потоковые вычислительные системы позволяют использовать параллелизм вычислительных алгоритмов различных уровней, потенциально достигать производительность, недоступную традиционным вычислительным системам. Основные проблемы, препятствующие развитию потоковых машин:

1. Не решена проблема создания активной памяти большого объема, допускающей одновременную активизацию большого количества операций.

2. Создание широкополосных распределительных и селекторных сетей потоковых машин и систем управления коммуникационной сетью является сложной задачей.

3. Обработка векторных регулярных структур через механизмы потока данных менее эффективна, чем традиционные решения.

4. Языки программирования для потоковых машин существуют, в основном, в виде графических языков машинного уровня. Языки типа SISAL, ориентируемые на описания потоковых алгоритмов, достаточно сложны для программистов.

6. Ассоциативная память

Оперативную память (ОП) можно представить в виде двумерной таблицы, строки которой хранят в двоичном коде команды и данные. Обращения за содержимом строки производится заданием номера (адреса) нужной строки. При записи, кроме адреса строки указывается регистр, содержимое которого следует записать в эту строку. Запись занимает больше времени, чем чтение. Пусть в памяти из трех строк хранятся номера телефонов.

1924021

9448304

3336167

Для получения номера телефона второго абонента следует обратиться: load (2) и получить в регистре ответа R = 9448304. Такой вид памяти, при котором необходимая информация определяется номером строки памяти, называется адресной. Другой вид оперативной памяти – ассоциативной можно рассматривать также как двумерную таблицу, но у каждой строки которой есть дополнительное поле, поле ключа. Например:

Ключ Содержимое

Иванов 1924021

Петров 9448304

Сидоров 3336167

После обращение к ассоциативной памяти с запросом : load (Петров) для данного примера получим ответ: R = 9448304. Здесь задание координаты строки памяти производится не по адресу, а по ключу. Но при состоянии ассоциативной памяти:

Ключ Содержимое

1 1924021

2 9448304

3 3336167

можно получить номер телефона из второй строки запросом: load (2). Таким образом на ассоциативной памяти можно моделировать работу адресной. Ассоциативная память имеет очевидное преимущества перед адресной, однако, у нее есть большой недостаток - ее аппаратная реализация невозможна для памяти большого объема.

ВОПРОС !!!! Предложите схему реализации модели ассоциативной памяти при помощи адресной.

7. Адресация памяти

Адресация памяти производится с точностью до байта, длина адреса, его разрядность, определяет пространство памяти, которое может быть доступно ("видимо") в программе. Так 32 рр. виртуальный адрес охватывает пространство в 4 Гбай­та. Это виртуальное пространство - математическая память программы мо­жет не совпадать с реальным, физическим пространством памяти ЭВМ.

Адреса виртуального пространства памяти - виртуальные ад­реса, а адреса физического пространства - физические адреса.

Механизм виртуальной памяти позволяет:

- снять ограничения, связанные с объемом памяти, при раз­работки алгоритмов;

- предоставлять программисту область памяти в виде логи­чески непрерывного пространства;

  • способствовать более эффективному управлению физической памятью.

Процесс преобразование виртуальных адресов в физические при выполнении программы называется трансляцией адресов, наи­более распространенный механизм для этого - страничная память. Механизмы виртуальной памяти реализуется путем разбиения памяти и виртуальной и физической на одинаковые страницы, обычно, раз­мером 4 Кбайта. Адрес разделяется на две части в соот­ветствии с принятой длиной страницы: номер страницы (а) и адрес внутри страницы - сдвиг, смещение (б ). Трансляция адреса

Виртуальный адрес Физический адрес

а б - > с б

Аппаратно трансляция адресов производится при помощи таблицы страниц. Каждой страни­це виртуальной памяти соответствует строка в таблице страниц, объем которой соответствует числу страниц виртуальной памяти. В i строке таблицы хранится: N страницы (блока) физической па­мяти, которая соответствует данной виртуальной, статус доступа (чтение, запись), признак записи. Полный физический адрес получается добавлением к физи­ческому адресу, полученного из таблице страниц, смещения внутри страницы (б). Реальная структура таблицы страниц имеет более сложный вид.

8 Чередование адресов(расслоение) памяти (interleaved memory)

Расслоение памяти: память делится на М банков с автономным управлением так, что при последовательной выборки повторное обращение к одному банку произойдет через М обращений, поэтому возможно совмещение вре­мени выборки. Для банков одинаковой емкости:B1,B2,B3,..Bm-1 адрес i трансформируется в адрес d внутри банка Bb расчетом:

i=d * m + b, где d=>0, 0<=b<=m-1

При расслоении на четыре распределение адресов в банках будет:

Адреса в банках-b Банк 1 Банк 2 Банк 3 Банк 4

0 0 1 2 3 Распределение

1 4 5 6 7 адресов i

2 8 9 10 11

При конвейерном доступе при М-кратным расслоении и регулярной выборке доступ к памяти возможен в ин­тервале 1/М цикла памяти. Но возможны конфликты по доступу, если шаг регулярной выборки коррелируется с числом банков памяти.

9. Назначение и структура кэш-памяти.

Для ускорения доступа к оперативной памяти используется буферизация данных и объектного кода в памяти, скорость которой значительно выше основной. Если бы доступ к любым типам данных был случайным, то буферизация была бы бесполезным. Эффект от буферизации можно определить среднему времени выборки: t = t2*p+ t1*(1-p), где t1 - среднее время доступа к данным основной памяти, t2 - среднее время доступа к данным из буфера (t2<t1), p - вероятность наличия данного в буфере. Очевидно, среднее время зависит от вероятности р и изменяется от среднего времени доступа к основной памяти (при p=0) до среднего времени доступа непосредственно в буфер (при p=1). Кэш (cache, cache memory) память, как правило, на порядок более быстрая, чем основная, размещается в качестве буферной, между процессором и основной памятью и служит для временного хранения (в рамках своего объема) всех данных, потребляемых или генерирумых процессором. В много-уровневых кэшах элементами связки: "процессор - основная память" могут выступать сами кеши. Алгоритм кэширования состоит в следующем:

1. По каждому запросу процессора происходит поиск требуемого дан­ного в кэш памяти (места для записи генерируемого данного).

2. Если данное (место) есть в кэше - кэш попадание (cache hit), то оно передается в процессор (из процессора).

3. Если нужного данного нет в кэше - кэш промах (cache miss), данное из основной памяти пересылается в кэш память, и передаются также процессору. При переполнении кэша (нет места для записи), из него удаляются (модифицированные данные сохраняются в основной памяти) часть данных, обычно, наименее востребованные.

Традиционным кэшем является "процессорный" кэш или кэш первого уровня (первичный) или кэш (L1 Cache), имеющийся на любом микропроцессоре. Это буферная память объемом от 4 Кбайт до 16 Мбайт, в которой размещаются все данные, адресуемые процессором, и из которой данные поставляются процессору. Эта память значительно быстрее основной, но меньшего объема, поэтому механизм кэширования обеспечивает обновление кэша, обычно, сохраняя в нем только наиболее часто употребляемые дан­ные. Обмен между основной и кэш памятями производится квантами, объ­емами 4 - 128 байт - копируются "строки кэша" (cache line), содержа­щие адресуемое данное.

Обычно, программный код кешируется через особый, I кэш память, отделенной от кэша данных D-кэша. Выборка данных из кэша (hit time) прозводится, обычно, за один такт синхронизации (оценки 1 - 4 такта), потери при кеш промахе оцени­ваются в 8 - 32 такта синхронизации, доля промахов (miss rate) - 1% -20%. По определению, эффект кэширования основан на предположении о многократном использовании данных (Data reuse) из кэш памяти. Принято различать две формы многократного использования данных кэша:- временное использование (temporal reuse). - пространственное использование (spatial reuse). Временное использование означает, что некоторое данное, загружен­ные в кэш, может использоваться, по крайней мере, более двух раз. Пространственное использование кэша предполагает возможность ис­пользовать некоторый пространственный набор данных - строки кэша. Архитектура кэш памяти: полностью ассоциативная, частично ассоциативная и кэш память с прямым отображением.

10. Кэш память с прямым отображением.

Архитектура кэш-памяти с прямым отображением (direct-map­ped) характеризуется на­личием явной зависимости между адресами буферной и оперативной памяти, причем каждому адресу кэша соответствует адреса оперативной памяти, кратные размеру кэш памяти. Память кэша состоит их памяти данных и памяти тэгов. Пусть, длина строки кэша равна 32 байтам, размер кэша – 4 Кбайт, тогда кэш память для данных состоит из 128 строк. ОЗУ разделено на блоки, размером в 4Кбайт, каждый содержит 128 строк. В нулевой строке кэша может быть размещены 0 или 128, или .... строки ОЗУ, в первой – 1 или 129 или.. строки т и.д. Для каждой заполненной строки данных кэша известен тэг – номер блока ОЗУ, которому принадлежит строка. Тэги хранятся в специальной памяти - памяти тэгов, размер которой – 128 строк. Длина строки памяти тэгов зависит от размера ОЗУ. Если объем ОЗУ – 4 Гбайт, тогда полный адрес - 32 бита можно представить в виде полей: 20 рр – тэг (T), 7 рр – номер строки таблиц кэша (S), 5 рр – номер байта в строке (N). Поиск запрошенного байта (T-S-N) в кэше с прямым распределением производится так:

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5301
Авторов
на СтудИзбе
416
Средний доход
с одного платного файла
Обучение Подробнее