ПОД конспект (Конспект ПОД), страница 5

2020-08-19СтудИзба

Описание файла

Файл "ПОД конспект" внутри архива находится в папке "Конспект ПОД". Документ из архива "Конспект ПОД", который расположен в категории "". Всё это находится в предмете "параллельная обработка данных" из 9 семестр (1 семестр магистратуры), которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Онлайн просмотр документа "ПОД конспект"

Текст 5 страницы из документа "ПОД конспект"

  1. Дисциплина обновления кэш-памяти.

Стратегии обновления данных в кэш смотрите в Вопросе 19. Далее рассматриваются стратегии обновления данных в памяти по обновления данных процессором.

WriteBack

В схеме обновления с обратной записью используется бит "изменения" в поле тэга. Этот бит устанавливается, если блок был обновлен новыми данными и является более поздним, чем его оригинальная копия в основной памяти. Перед тем как записать блок из основной памяти в кэш-память, контроллер проверяет состояние этого бита. Если он установлен, то контроллер переписывает данный блок в основную память перед загрузкой новых данных в кэш-память (то есть только тогда, когда уже не нужны обновленные данные в кэш и они замещаются).

Обратная запись быстрее сквозной, так как обычно число случаев, когда блок изменяется и должен быть переписан в основную память, меньше числа случаев, когда эти блоки считываются и перезаписываются.

Однако обратная запись имеет несколько недостатков. Во-первых, все измененные блоки должны быть переписаны в основную память перед тем, как другое устройство сможет получить к ним доступ. Во-вторых, в случае катастрофического отказа, например, отключения питания, когда содержимое кэш-памяти теряется, но содержимое основной памяти сохраняется, нельзя определить, какие места в основной памяти содержат устаревшие данные. Наконец, контроллер кэш-памяти для обратной записи содержит больше (и более сложных) логических микросхем, чем контроллер для сквозной записи. Например, когда система с обратной записью осуществляет запись измененного блока в память, то она формирует адрес записи из тэга и выполняет цикл обратной записи точно так же, как и вновь запрашиваемый доступ.

WriteThru

Сквозная запись.

При обновлении кэш-памяти методом сквозной записи контроллер кэш-памяти одновременно обновляет содержимое основной памяти. Иначе говоря, основная память отражает текущее содержимое кэш-памяти. Быстрое обновление позволяет перезаписывать любой блок в кэш-памяти в любое время без потери данных. Система со сквозной записью проста, но время, требуемое для записи в основную память, снижает производительность и увеличивает количество обращений по шине (что особенно заметно с мультизадачной системе).

Буферизованная сквозная запись.

С схеме обновления с буферизованной сквозной записью любая запись в основною память буферизуется, то есть информация задерживается в кэш-памяти перед записью в основную память (схемы кэш-памяти управляют доступом к основной памяти асинхронно по отношению к работе процессора). Затем процессор начинает новый цикл до завершения цикла записи в основную память. Если за записью следует чтение, то это кэш-попадание, так как чтение может быть выполнено в то время, когда контроллер кэш-памяти занят обновлением основной памяти. Эта буферизация позволяет избежать снижения производительности, характерного для системы со сквозной записью (запись производится в тот момент, пока процессор читает из кэша и занят чем чем-то кроме обновления данных).

У этого метода есть один существенный недостаток. Так как обычно буферизуется только одиночная запись, то две последовательные записи в основную память требуют цикла ожидания процессора. Кроме этого, запись с пропущенным последующим чтением также требует ожидания процессора. Состояние ожидания - это внутреннее состояние, в которое входит процессор при отсутствии синхронизирующих сигналов. Состояние ожидания используется для синхронизации процессора с медленной памятью.

Запись с размещением и без.

Предыдущие подходы описывают только случаи кэш-попадания. Однако случаи, когда обновляемые данные в КЭШе отсутствуют, также возможны. Тогда данные пишутся в ОЗУ и потом копируются в кэш. Запись без рахмещения – данные не копируются в кэш. Обычно при использовании стратегии WriteThru размещение не делается, а при использовании обратной записи делается – есть надежда, что не придется снова лезть в память для записи в след. раз.

  1. Стратегии записи в кэш-память.

Стратегии обновления данных в памяти рассмотрены в Вопросе 18. Далее рассматривается случай записи новых данных из памяти в кэш при кэш-промахе.

Для случая прямого отображения стратегия тривиальна – замещается строка, в которой может располагаться данных блок ОЗУ. Для ассоциативной организации кэша (полностью или частично) надо выбирать, какую из строк замещать новыми данными. Две стратегии: случайная или LRU (Least Recently Used) – заменяется та, которую дольше всех не использовали. Сложность – надо фиксировать все обращения к строкам кэша, чтобы вычислять наиболее неиспользуемую строку. Стоит отметить, что доли промахов с ростом кэша для случайного алгоритма уменьшаются быстрее, так что эффективность применения LRU снижается.

  1. Расслоение памяти.

Реализация оперативной памяти с использованием некоторого множества микросхем позволяет использовать заложенный в ней потенциальный параллелизм. Для этого микросхемы памяти объединяются в банки или модули, содержащие фиксированное число слов, причем только к одному из этих слов банка возможно обращение в каждый момент времени. Чтобы получить большую скорость доступа, нужно осуществлять одновременный доступ к нескольким банкам памяти. Одна из общих методик, используемых для этого, называется расслоением памяти. При расслоении памяти банки организуются так, чтобы N последовательных адресов памяти i, i + 1, i + 2, ..., i + N-1 приходились на N различных банков. Степень или коэффициент расслоения определяют распределение адресов по банкам памяти. Схема управления памятью реализует конвейер совмещения обращений к различным блокам памяти. Такая организация памяти увеличивает в N раз обращения по последовательным адресам, что является характерным при загрузке информации в кэш память и сохранении одного из её блоков. При подобной организации оперативной памяти можно использовать для неё микросхемы в N раз более медленные, чем микросхемы кэш памяти и не увеличивать разрядность шины данных.

Наиболее общим случаем расслоения памяти является возможность реализации нескольких независимых обращений, когда несколько контроллеров памяти позволяют банкам памяти работать самостоятельно. Такое решение наиболее характерно для многопроцессорных компьютеров.

Для банков одинаковой емкости: B1,B2,B3,..Bm-1 адрес i трансформируется в адрес d внутри банка Bb расчетом:

i=d * m + b, где d=>0, 0<=b<=m-1

При расслоении на четыре распределение адресов в банках будет:

Адреса в банках-b Банк 1 Банк 2 Банк 3 Банк 4

0 0 1 2 3

1 4 5 6 7

2 8 9 10 11

  1. Принципы VLIW архитектуры.

В ЭВМ с архитектурой VLIW (Very Long Instruction Word) - (очень длинные командные слова), команды могут иметь широкий формат (длину) и команда может содержать несколько содержательных инструкций, выполнение которых детально регламентируется в терминах тактов работы АЛУ (параллельное выполнение нескольких команд в АЛУ). В таких архитектурах имеется возможность программировать вычислительные алгоритмы (включая векторные) с максимальной производительностью для данной аппаратуры. В них вся работа по оптимальному программированию возлагается на системы программирования (или ручное программирование).

Однако упрощения в архитектуре управления приводит к значительному возрастанию сложности задачи планирования выдачи команд, так программными средствами должна быть обеспечена точная синхронизация считывания и записи данных. При этом необходимо так планировать параллельное выполнение операций машины, чтобы выполнялись определенные ограничения на число одновременно считываний и записей в наборы регистров, использование ФУ и т.д. Размер командного слова в машинах данной архитектуры - FPS (AP-120B) - 64 бита, Multilow Tract - 1024.

Определяющие свойства архитектуры VLIW:

- Одно центральное управляющее устройство (УУ), обрабатывающее за один такт одну длинную команду.

- Большое число функциональных устройств (ФУ) - АЛУ.

- Наличия в длинной команде полей, каждое из которых содержит ко­манду управления некоторым функциональным устройством или команду обращения к памяти.

- Статически определенная длительность в тактах исполнения каждой операции. Операции могут быть конвейеризованы.

- Закрепление во время компиляции банков расслоенной памяти за ФУ для получения максимальной ширины доступа для данных, которые можно соединить в одну команду.

- Система передвижения данных между ФУ минуя память. Маршрут передвижения полностью специфицируется во время компиляции.

- Практическая невозможность ручного программирования в силу большой сложности возникающих комбинаторных задач. То есть требуются специальные системы программирования и оптимизации. В отличие от суперскалярных процессоров, здесь требуется статическая (на этапе компиляции) распараллеливание.

  1. Суперскалярные и мультитредовые архитектуры микропроцессоров.

Суперскалярный процессор представляет собой нечто большее, чем обычный последовательный (скалярный) процессор. В отличие от последнего, он может выполнять несколько операций за один такт. Основными компонентами суперскалярного процессора являются устройства для интерпретации команд (УУ), снабженные логикой, позволяющей определить, являются ли команды независимыми, и достаточное число исполняющих устройств (ФУ, АЛУ). В исполняющих устройствах могут быть конвейеры. Суперскалярные процессоры реализуют параллелизм на уровне команд. Примером компьютера с суперскалярным процессором является IBM RISC/6000. Тактовая частота процессора у ЭВМ была 62.5 МГц, а быстродействие системы на вычислительных тестах достигало 104 Mflop (Mflop - единица измерения быстродействия процессора - миллион операций с плавающей точкой в секунду). Суперскалярный процессор не требует специальных векторизующих компиляторов, хотя компилятор должен в этом случае учитывать особенности архитектуры. Итак, суперскалярные процессор призван, в отличие от VLIW, динамически определять места распараллеливания.

Другой, по сравнению с организацией кэш-памяти, метод построения внутрикристальной памяти применяется в мультитредовой архитектуре, основная особенность которой – использование совокупности регистровых файлов (добавление УУ при одном АЛУ). Эта архитектура решает проблему разрыва между скоростью обработки в процессоре и временем доступа в основную память за счет переключения в каждом такте процессора на работу с очередным регистровым файлом. Каждый регистровый файл обслуживает один вычислительный процесс – тред (поток). Всего в каждом процессоре имеется n регистровых файлов, поэтому запрос, выданный в основную память каждым из потоков, может обслуживаться в течение n-1 такта, вплоть до момента, когда процессор снова переключится на тот же регистровый файл. Выбор значения n определяется отношением времени доступа в память ко времени выполнения команды процессором. Конечно, задача формирования потоков из последовательной программы должна, по возможности, решаться компилятором. В противном случае будущее этой архитектуры окажется ограниченным узкой проблемной ориентацией.

Компания Tera объявила о разработке проекта мультитредового микропроцессора, реализующего процессор МТА. Level One, приобретенная Intel, выпустила мультитредовый сетевой микропроцессор IXP1200, содержащий в своем составе 6 четырехтредовых процессоров. IBM анонсировала проект компьютера Blue Gene, кристалл микропроцессора которого включает 32 восьмитредовых процессора. В кристалл встроена память EDRAM, организованная в 32 блока. Каждый блок соответствует одному из 32 процессоров и имеет шину доступа 256 разрядов. Поскольку EDRAM обладает высокой пропускной способностью и малой задержкой, то при восьмитредовой структуре процессора становится возможным отказаться от кэш-памяти, вместо которой между процессором и памятью используется небольшая буферная память.

  1. Стандарт IA-64.

Материал: http://www.ixbt.com/cpu/ia64.html

Дополнительно: http://joyous-life.ru/cgi-bin/index.cgi?&id=44

  • Команды в формате IA-64 упакованы по три в 128-битный пакет для быстрейшей обработки.

  • Каждый 128-битный пакет содержит шаблон (template) длиной в несколько бит, помещаемый в него компилятором, который указывает процессору, какие из команд могут выполняться параллельно. Теперь процессору не нужно будет анализировать поток команд в процессе выполнения для выявления "скрытого параллелизма". Вместо этого наличие параллелизма определяет компилятор и помещает информацию в код программы. Каждая команда (как для целочисленных вычислений, так и для вычислений с плавающей точкой) содержит три 7-битных поля регистра общего назначения (РОН). Из этого следует, что процессоры архитектуры IA-64 содержат 128 целочисленных РОН и 128 регистров для вычислений с плавающей точкой. Все они доступны программисту и являются регистрами с произвольным доступом (programmer-visible random-access registers). Шаблон пакета (bundle's template field) указывает не только на то, какие команды в пакете могут выполняться независимо, но и какие команды из следующего пакета могут выполняться параллельно. Команды в пакетах не обязательно должны быть расположены в том же порядке, что и в машинном коде, и могут принадлежать к различным путям ветвления. Компилятор может также помещать в один пакет зависимые и независимые команды, поскольку возможность параллельного выполнения определяется шаблоном пакета. По сравнению с процессорами х86, у которых всего восемь целочисленных РОН и стек глубины 8 для вычислений с плавающей точкой, IA-64 намного "шире" и, соответственно, будет намного реже простаивать из-за "нехватки регистров".

  • Компиляторы для IA-64 будут использовать технологию "отмеченных команд" (predication) для устранения потерь производительности из-за неправильно предсказанных переходов и необходимости пропуска участков кода после ветвлений. Когда процессор встречает "отмеченное" ветвление в процессе выполнения программы, он начинает одновременно выполнять все ветви, уникально помечая каждую из них (компилятор помечает каждую команду предикатов ветки, к которой она принадлежит). Максимально – 64 ветви. После того, как будет определена "истинная" ветвь, процессор сохраняет необходимые результаты и сбрасывает остальные.

  • Компиляторы для IA-64 будут также просматривать исходный код с целью поиска команд, использующих данные из памяти. Найдя такую команду, они будут добавлять пару команд - команду предварительной загрузки (speculative loading) и проверки загрузки (speculative check). Во время выполнения программы первая из команд загружает данные в память до того, как они понадобятся программе. Вторая команда проверяет, успешно ли произошла загрузка, перед тем, как разрешить программе использовать эти данные. Предварительная загрузка позволяет уменьшить потери производительности из-за задержек при доступе к памяти, а также повысить параллелизм.

Вывод: вся оптимизация ложится на компилятор, поиск параллелизма также возлагается на компилятор.

  1. Оптимизация программ под архитектуру микропроцессора.

  2. Гетерогенные распределенные вычислительные системы.

Ключевое слово – ИНТРАНЕТ.

Мультикомпьютерные распределенные системы разделяют на гомогенные и гетерогенные. Для гомогенных систем характерна одна соединяющая компьютеры сеть, использующая единую технологию. Одинаковы также и все процессоры, имеющие одинаковый объем собственной памяти. Гомогенные мультикомпьютерные системы нередко используют в качестве параллельных (работающих с одной задачей), как и мультипроцессорные. В отличие от них гетерогенные мультикомпьютерные системы могут содержать целую гамму независимых компьютеров, соединенные разнообразными сетями. Далее см. Таненбаум, стр. 44, 1.3.3. Есть централизованное управление, подразумевается наличие распределенной программной системы (ОС, ФС, и т.д.).

  1. Метакомпъютинг.

Ключевое слово – ИНТЕРНЕТ.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5288
Авторов
на СтудИзбе
417
Средний доход
с одного платного файла
Обучение Подробнее