47982 (Особенности арифметико-логических устройств (АЛУ) с двоично-десятичными кодами (ДДК) при вычислении операций умножения и деления и поиск путей их ускорения)

2016-07-29СтудИзба

Описание файла

Документ из архива "Особенности арифметико-логических устройств (АЛУ) с двоично-десятичными кодами (ДДК) при вычислении операций умножения и деления и поиск путей их ускорения", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "контрольные работы и аттестации", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "47982"

Текст из документа "47982"

Особенности АРИФМЕТИКО-ЛОГИЧЕСКИХ УСТРОЙСТВ (АЛУ) с двоично-десятичными кодами (ДДК) при вычислении операций умножения и деления и поиск путей их ускорения

Двоичные коды достаточно громоздкие и поэтому в качестве входной и выходной информации часто используют ДДК. ДДК получают при преобразовании десятичного числа в двоичное путем замены каждой десятичной цифры числа ее двоичным эквивалентом, выделяя при этом под каждую десятичную цифру 4 двоичных разряда. Очевидно, что такие преобразования не соответствуют переводу числа из десятичного формата в двоичный. Однако такой способ является весьма простым. Поэтому, при использовании ДДК чисел необходимо выполнять необходимые корректирующие действия , которые приводят полученное значение к истинному результату.

Пример:

37=

АЛУ, построенное для обработки ДДК базируется на традиционном двоичном сумматоре с выполнением дополнительных корректирующих действий. Основная идея корректирующих механизмов заключается в том, что при обработке десятичных разрядов переносы в смежные разряды возникают при значениях, превышающих число 10, а при сложении ДДК перенос в смежный разряд возникает при превышении в разряде 16. Единицей данных при обработке ДДК является т. наз. тетрада, представляющая собой 4 последовательных бита. Для компенсации искажений, возникающих при сложении ДДК, формируют операнд, каждая цифра которого имеет избыток, равный 6. В таком случае:

z[i]=x[i]+y[i]+P[i]

Если при обработке i-того разряда десятичного кода при сложении i-того разряда первого операнда, i-того разряда второго операнда и входного переноса в i-тый разряд, значение превышает 10, то в i-том разряде остается

z[i]=x[i]+y[i]+P[i]-10

P[i+1]=1

Формируется сигнал переноса в следующий разряд. Поэтому при сложении операндов с избытком в (х6) получаем:

z=x6+Y

В таком случае в i-том разряде z будет такое значение:

тогда z16. В таком случае в i-том разряде z будет:

z[i]=6+x[i]+y[i]+P[i]-16=x[i]+y[i]+P[i]-10=z[i]

P[i+1]=1 –перенос в следующий разряд

При получении псевдосуммы z обнаруживается ситуация, когда разряды (тетрады), из которых был перенос в старший разряд, содержат правильное значение цифры этого разряда. Разряды, из которых не было переносов в старший разряд, содержат цифру с избытком, равным 6. Поэтому полученное значение требует корректировки. Она может быть проведена путем вычитания из разрядов, из которых не было переносов, значения 6. На практике, вместо вычитания к этим разрядам добавляют значение равное 10 и блокируют межтетрадные переносы:

Упрощенная схема АЛУ


Алгоритм сложения ДДК

РгВ принимает первый операнд, затем в РгА формируют числосо значением 6 в каждой тетраде.

В РгСм формируется код первого операнда с избытком 6, который принимается в РгВ.

В РгА принимается второй операнд. Сумматор формирует значение z=x6+y. При этом тетрады, из которых не возникли сигналы переноса, фиксируются.

В ргА формируется операнд, в тетрадах которого размещено число 10, если в соответствующих тетрадах z не возникал сигнал переноса. z из РгСм передается в РгВ.

Корректировка z путем добавления операнда с 10 в РгА с блокировкой межтетрадных переносов. Полученный результат передается на выходную шину данных.

Для вычитания ДДК производятся такие действия:

Второй операнд Y преобразуют в обратный код инвертированием каждого бита, при этом получается обратный код с избытком 6, т.к. каждая тетрада является дополнением до 15.

Выполняется суммирование . Если из старшей тетрады z при формировании был перенос, то получено положительное значение результата. Если переноса не было из старшей тетрады, то результат является отрицательным в дополнительном коде. При этом дополнительный код инвертируется и добавляется 1 к младшему разряду. Полученное значение требует корректировки. Если при получении z из тетрады был перенос, то в последствии к этой тетраде надо добавить 10 с блокировкой межтетрадных переносов.

Опции с ДДК со знаками сводятся к определению реальных опций, которые затем выполняются по приведенным схемам.

Умножение ДДК. Анализируется значение очередной тетрады, начиная с младшей и к сумме частичных произведений добавляется множимиое столько раз, какому значению равно число в тетраде. Значение суммы частичных произведений сдвигается вправо на тетраду, чтобы уменьшить количество сложений. Отдельно формируется 8, 4 и 2 кратное множимое (8х, 4х, 2х, 1х). Данная процедура повторяется, пока все тетрады множителя не будут проанализированы.

Деление ДДК. Производится путем многократного вычитания делителя из текущего значения частичных разностей, которые первоначально равны значению делимого, последовательным сдвигом частичных разностей влево по разрядной сетке. Многократное вычитание выполняет до получения отрицательного результата. Количество вычитаний до получения отрицательного результата соответствует очередной цифре частного. В целом, опция похожа на традиционное деление «уголком».

Методы ускорения операции умножения. Аппаратурные методы ускорения требуют дополнительных затрат , пропорциональных количеству обратных разрядов . Как пример к аппартным методам операции (*) – включение дополнительных цепей сдвига возможно за 1 такт алгоритма синхронизировать выполнение сдвига на нескольких разрядах .Другим методом является работы сумматоров , а также совмещение во времени сдвиговых операций и операций суммирования

Логические методы ускорения операции умножения требуют изменения центрального управления . Основным источником повышения эффективности является уменьшение кол-ва сложений выполняемых в процессе получения частных произведений . К логическим так же можно отнести методы позволяющие анализировать несколько разрядов множителей одновременно и выполнить соответствующие изменения суммы частных произведений.

Пример лог. метода

0151413121100=26 –21 ;

k+1 k k-1 0

| | | |

0 1 1 1 0 1 1 1 …….

Вместо 2-Х вычитаний выполняется одно .Если … 0 1к 0 в (к) выполняется только одно сложение

Формализация этого подхода может быть сделана так :

di=(bi + bi-1)*di-1

Si = di *bi+1

bi –логическая переменная определяющая необходимость выполнения арифметической операции для i-того разряда множителя

Si –определяет знак выполнимой операции . Если Si =0 ,то выполняется сложение текущей суммы частного произведения и множимого . Если Si =1 то выполняется “-“ вычитание множимого из суммы частн. Произведений

Данное правило – правило Лемана. Оно при самых неблагоприятных комбинациях разрядов множителей вдвое сокращает кол-во операций суммирования . Среднее значение ускорения *3.

На практике получили применение другие способы операции умножения с анализом нескольких разрядов множителя .

При анализе 2-х разрядов множителя можно предложить след последовательность действий :

Если два разряда 00 . то выполняется только сдвиг частного произведения (далее ч.п.)вправо на 2 разряда

Если 01 то к ч.п. добавляется множимое , а далее выполняется сдвиг на два разряда

Если 10 то к ч.п добовляется удвоеное множимое и ч.п сдвигается вправо на два разряда, если 11 то вычитаем множимое и на специальном триггере запоминается ситуация о необходимости коррекции при анализ след 2-х разрядов. Далее ч.п сдвигается вправо на два разряда , след пара разряда множителя уже рассматривается как увел на 1.

Значение разрядов

Операция при знаке предыдущего разрядов <1000

Операция при знаке предыдущего разрядов >=1000

0000

П(4)z

П(4)(z+x)

0001

П(4)(z+x)

П(4)(z+2x)

0010

П(4)(z+2x)

П(4)(z+3x)

0011

П(4)(z+3x)

П(4)(z+2x+2x)

0100

П(4)(z+2x+2x)

П(4)(z+2x+3x)

0101

П(4)(z+2x+3x)

П(4)(z+6x)

0110

П(4)(z+6x)

П(4)(z+x+6x)

0111

П(4)(z+x+6x)

П(4)(z+2x+6x)

1000

П(4)(z+2x+6x)

П(4)(z-x-6x)

1001

П(4)(z-x-6x)

П(4)(z-6x)

1010

П(4)(z-6x)

П(4)(z-2x-3x)

1011

П(4)(z-2x-3x)

П(4)(z-2x-2x)

1100

П(4)(z-2x-2x)

П(4)(z-x-2x)

1101

П(4)(z-x-2x)

П(4)(z-2x)

1110

П(4)(z-2x)

П(4)(z-x)

1111

П(4)(z-x)

П(4)z

Указанные значения соответствуют кратным множимого, которые создаются и хранятся отдельно. Очевидно, можно получить похожую схему при анализе большего количества разрядов. На практике используются также табличное умножение, которое с помощью соответствующих элементов памяти позволяет для определённых комбинаций двоичных разрядов сразу получить соответствующее значение, которое прибавляют к текущему значению суммы частичных произведений перед сдвигом её вправо на требуемое значение разрядов.

Табличное умножение значительно ускоряют операцию, используемую во всех моделях процессора Pentium. Целочисленное умножение является составной частью умножения чисел с плавающей точкой, поэтому эффективность данной операции существенно влияет на эффективность операции с плавающей точкой. Дополнительно для ускорения выполнения операции умножения используется конвейерная форма организации, при которой сочетаются во времени различные фазы или элементы операции, выполняемые над разными последовательностями операндов. Именно наличие последовательностей позволяет поднять общую производительность операции.

АЛУ для реализации операции деления.Операция / является обратной по отн к операции *, поэтому общая структура операции заключается в последовательности вычитания значения делителя из делимого и сдвигах.

Результат в виде текущего значения частичных разностей. Цифры частного определяются как при положительном значении частичных разностей и как нуль в противном случае.

Рассм. осн. требования: Частное Z как рез-т деления делимого X на делитель Y, Z=X/Y. Х представляется в формате двойного слова, т.е. занимает (2n-1) разрядов, Z и Y представлены в формате одинарного слова, т.е. занимают (n-1)разрядов. Поэтому |Z|<2n-1. Для того, чтобы частное размещалось в формате двойного слова необходимо |X’|-|Y|<0, где |X’|=|X|-2-(n+1). В противном случае частное не может быть размещено в формате одного слова. Поэтому операция деления невыполнима. Для поверки этого условия выполним пробное вычитание. Для этого выравнивают делимое и делитель так, чтобы младший разряд делителя был под (n-1)-м разрядом делимого.если вычитание даст отрицательный результат, то операция продолжается. По сути дела мы реализовали традиционное деление «в столбик».Т.о. для выполнения операции деления необходимо либо сдвигать вправо делитель по разрядной сетке, начиная со старших разрядов в процессе получения частичных разностей. При этом делимое остается неподвижным. Либо можно сдвигать влево значение делимого при неподвижном делителе. В процессе получения частичных разностей очередная цифра частного определяется знаком текущего значения частичных разностей. Исходя из этого может быть построено 2 варианта АЛУ.(СХЕМА)


Данная схема предполагает использование двойной разрядности всех элементов. При этом делимое и послед. значение частичных разностей неподвижны, а сдвигаются вправо компоненты делителя. Начальное положение делителя старшие разряды регистра РгУ, а затем делитель из результате каждой итерации. Частичные разности получаются с помощью сумматора, на один вход которого подается делимое, а на другой-обратный код делителя. Доп. код получается подсуммированием 1 к младшему разряду сумматора. Цифры частного формируют по знаку полученных частичных разностей, т.е. по нулевому разряду сумматора. Цифры заносятся в младший разряд регистра РгZ, которые передаются со сдвигом влево в регистр Z’, а далее прямо в регистр Z. Основным недостатком этой схемы является использование двойной разрядности всех компонентов. На практике получила распространение схема с неподвижным делителем и сдвигаемым влево значением частичных разностей.(СХЕМА).

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее