38587 (Книгодело), страница 2

Описание файла

Документ из архива "Книгодело", который расположен в категории "контрольные работы". Всё это находится в предмете "журналистика" из раздела "Студенческие работы", которые можно найти в файловом архиве Студент. Не смотря на прямую связь этого архива с Студент, его также можно найти и в других разделах. Архив можно найти в разделе "контрольные работы и аттестации", в предмете "журналистика" в общих файлах.

Онлайн просмотр документа "38587"

Текст 2 страницы из документа "38587"

3. Регистрация (запись) выделенных составляющих (цветоделенных изображений). Запись производится на фотографическом материале, на магнитных носителях, на формных материалах (пластинах) или на формных цилиндрах (в глубокой печати, при цифровой печати, в DI-технологии). Сюда же относятся необходимые технологические преобразования: растрирование, коррекция нелинейности устройства записи и т.д. Эта стадия носит название переходной, или стадии изготовления печатных форм.

4. Собственно печатание изображения на материальном носителе (бумаге, пластике и пр.) и получение оттиска (репродукции). Здесь производится наложение и совмещения цветоделенных изображений, окрашенных в соответствующие цвета применяемого синтеза и формирование изображения на оттиске. Эта стадия определена как синтез цветного изображение на оттиске или печатание.

Цветовоспроизведение в полиграфии основано на общих принципах синтеза цвета. Если на глаз действует смесь излучений, то реакции рецепторов на каждое из них складываются. Смешение окрашенных световых лучей дает луч нового цвета. Смесь красок имеет также иной цвет. Такой эффект получения нового цвета получил название синтез цвета.

Различают два основных вида синтеза цвета – аддитивный (смешение излучений, световых лучей) и субтрактивный синтез цвета (смешение вещественных сред, красок, растворов).

Аддитивный синтез цвета

Это воспроизведение цвета в результате оптического смешения излучений базовых цветов (красного, зелёного и синего - R, G, B). Используется при создании цветных изображений на экране в телевидении, в мониторах компьютеров издательских систем, возникает на отдельных участках растровых изображений оттиска (в светах изображения, где наложения разноцветных растровых элементов вследствие малых размеров менее вероятно) при автотипном синтезе цвета в полиграфии.

Субтрактивный синтез цвета

Это получение цвета в результате вычитания отдельных спектральных составляющих из белого света. Такой синтез наблюдается при освещении белым светом, цветного оттиска. Свет падает на цветной участок; при этом часть его поглощается (вычитается) красочным слоем, а остальная часть отражаясь, в виде окрашенного потока попадает в глаз наблюдателя. Этот синтез используется в полиграфии при смешении окрашенных сред, например, красок вне машины, для получения нужных цветов или оттенков на участках изображения при наложении растровых элементов разных красок на оттиске (на участках цветного изображения, где растровые элементы разных красок перекрываются в офсетной и высокой способах печати). В способе традиционной глубокой печати синтез цвета на оттиске по всему изображению является субтрактивным.

Автотипный синтез цвета

Это воспроизведение цвета в полиграфии, при котором цветное полутоновое изображение формируется разноцветными растровыми элементами (точками или микроштрихами) с одинаковой светлотой (насыщенностью) отдельных печатных красок, но различных размеров и форм. При этом эффект полутонов сохраняется благодаря тому, что тёмные участки оригинала воспроизводятся более крупными растровыми элементами, а светлые - более мелкими. При наложении растровых элементов на оттиске в процессе печатания синтез цвета носит смешенный аддитивно - субтрактивный характер.

1. Закон трехмерности. Любой цвет однозначно выражается тремя цветами, если они линейно независимы (линейная независимость заключается в том, что нельзя получить никакой из указанных трех цветов сложением двух остальных).

2. Закон непрерывности. При непрерывном изменении излучения цвет изменяется также непрерывно (не существует такого цвета, к которому невозможно было бы подобрать бесконечно близкий).

3. Закон аддитивности. Цвет смеси излучений зависит только от их цветов, но не от спектрального состава. Все три закона наглядно проявляются в процессе синтеза цветных полутоновых изображений на оттиске.

Известно, что трехкомпонентная теория зрения является теоретической базой цветного синтеза при многокрасочном репродуцировании цветных оригиналов средствами полиграфической технологии, где используют триаду цветных красок - желтая (ж), пурпурная (п), и голубая (г). Применение четвертой черной (ч) краски не противоречит принципу трехкрасочного воспроизведения цветов, так как черную краску теоретически и практически можно рассматривать как смесь трех цветных красок. Черная краска одновременно заменяет три цветные и вместе с тем увеличивает их общее количество за один краскопрогон в печатной машине.

В полиграфии при воспроизведении цветных оригиналов способами офсетной и высокой печати ввиду растрового построения многокрасочной репродукции имеет место синтез цветов, содержащий признаки как аддитивного, так и субтрактивного синтезов, где в создании цветовых оттенков на цветной репродукции участвуют 16 разноокрашенных растровых элементов - незапечатанная бумага, три одинарные (основные цветные печатные краски ж, п, г) и черная ч, три бинарные (парные) наложения трехцветных печатных красок - ж+п, ж+г, п+г, двойные наложения цветная + черная - ж+ч, п+ч, г+ч, тройные наложения основных печатных (цветные и черная - ж+п+ч, ж+г+ч, п+г+ч, ж+п+г) красок и их четырехкратное наложение друг на друга с участием черной ж+п+г+ч. Восемь из них образованы с участием черной краски. Как уже было подчеркнута этот синтез назван автотипным, а способы печати, в которых используется этот синтез цвета, определяют как способы автотипной печати. В традиционном способе глубокой печати синтез цвета на оттиске является классическим субтрактивным синтезом.

3. Цифровая цветопроба

Бурное развитие цифровых печатных устройств в последние несколько лет коснулось и традиционных допечатных процессов. Рост разрешения принтеров позволил производителям цветопробных систем заявить о возможности получения растровой цифровой цветопробы. Однако в связи с тем, что процесс получения такой цветопробы требует значительно большего контроля над допечатным процессом, нежели при получении обычной (нерастровой) цифровой цветопробы, мы решили постараться осветить этот процесс, тем более, насколько нам известно, в российской полиграфической прессе этого никто еще не делал. Итак, речь пойдет о растровой цифровой цветопробе.

Сегодня, когда с одной стороны непрестанно улучшается качество флексографской печати, появляются новые и совершенствуются существующие технологии, с другой - растут требования к качеству у потребителей упаковки, необходимость в получении контрактных цветопроб, максимально точно отражающих тиражный оттиск, начинает ощущаться особенно остро. А можно ли называть цветопробу контрактной, если она не растрированная? Если учесть специфику рынка упаковки и особенности флексографской печати, ответ получится вполне однозначным - конечно, нет! Путь, пройдя по которому, мы пришли к такому выводу, мы предлагаем рассмотреть ниже.

Среди профессионалов бытует мнение, что необходимость в получении растрированной цветопробы не столь велика. Опираясь на личный опыт и проведя дополнительные исследования, мы приводим несколько аспектов, доказывающих ее актуальность и необходимость применения:

  • моделирование растровых структур с невысокими линиатурами (до 100 lpi). Вроде бы это не нуждается в комментариях: и без того понятно, что крупный растровый рисунок, заметный невооруженным глазом, должен быть отражен на цветопробе, которая претендует на контрактную;

  • моделирование растровых структур с любыми формами точек и различными алгоритмами растрирования (АМ и ЧМ). Конечно, можно и дальше пытаться объяснять заказчику, что такое стохастическое растрирование и как выглядит линейный растр, но не проще ли показать это на цветопробе?

  • точное воспроизведение мелких элементов изображения. Здесь имеется в виду ситуация, когда детали изображения меньше или сопоставимы по размерам с растровой точкой, что может приводить к их потере. Это можно проиллюстрировать на следующих примерах:

    • В графических макетах с невысокой линиатурой это может проявляться на надписях, расположенных на фоновых растяжках (рис. 1, вверху);

    • В полноцветных макетах с линиатурами более 100 lpi на таких структурах, как шерсть животных или волосы (рис. 1, внизу).

  • контроль результатов цветоделения и рипования. Проверка файлов на предмет правильности выполнения цветоделения, а также процедуры преобразования PS-файлов в однобитные файлы (рипование) - это головная боль любого полиграфического производства и особенно флексографского.

Рис. 1. Пример изображений с мелкими деталями. Вверху - графический макет невысокой линиатуры с различными фоновыми растяжками, на которых могут не читаться шрифты мелкого кегля. Внизу - полноцветный макет. Увеличенный фрагмент N1:

A - тиражного флексографского оттиска; B - растрированной цветопробы и C - полутоновой. Мелкие детали, видимые на полутоновой цветопробе (например, усики котенка) теряются при растрировании


В случае применения аналоговой технологии стоимость ошибки, если она своевременно обнаружена на пленке, не столь высока, как в случае применения цифровой технологии, когда изображение сразу записывается на масочный слой, покрывающий фотополимерную пластину. Необходимо отметить, что не всякая ошибка может быть обнаружена на пленке (аналоговой или цифровой). Например, возникновение муаров, которые являются следствием наложения нескольких растровых структур и проявляются только на оттиске.

Для решения таких задач растрированная цветопроба просто незаменима и позволит существенно облегчить операции контроля. Попытаемся оценить ее полезность для производителей упаковки и этикетки. Рассмотрим табл. 1.

Шесть критериев оценки выбраны по следующим соображениям: 1-3 - взяты непосредственно из аспектов, доказывающих актуальность применения; 4 - в этом случае проведение эффективного контроля возможно только с использованием цифровой растрированной цветопробы; 5 - создает предпосылку для использования любой цветопробы; 6 - этот критерий включен из соображений экономического характера.

Предполагается, что цветопроба позволит экономить средства по следующим причинам:

  • своевременное обнаружение ошибок из разряда тех, которые могут быть идентифицированы только на растрированной цветопробе;

  • заказчику на одобрение подается цветопроба и все вопросы, связанные с доводкой дизайна, уточняются на стадии допечатной подготовки. Проще говоря, отпадает необходимость приглашать заказчика на приладку для проведения согласования конечного результата;

  • печатник имеет перед глазами прообраз тиражного оттиска и, руководствуясь им, а не общими замечаниями по цветности и характеру дизайна - каким он должен быть, осуществляет оперативную приладку и выход на тираж в кратчайшие сроки.

В ней приведены семь основных и три перспективных сегмента рынка упаковки и отмечены свойственные им характерные особенности, создающие предпосылки к применению растрированной цифровой цветопробы. Как видно из таблицы, почти во всех секторах наблюдается равная степень потенциальной потребности. Исключение составляет сектор колбасной оболочки, где по понятным причинам она пока ниже, однако если посмотреть динамику развития в этом сегменте рынка, то можно предположить, что вскоре ситуация изменится в сторону роста заинтересованности.

Итак, мы определили, что цифровая растрированная цветопроба нужна и востребована на современном рынке упаковки, запечатываемой флексографским способом. Однако это лишь одна сторона медали, и теперь настало время перейти к рассмотрению принципов построения и реальных возможностей современной цифровой цветопробы.

Принципы построения растрированной цифровой цветопробы

Для получения цветопробы, которая воссоздает именно тот растр, что будет на тиражном оттиске (не имитирует, а именно воссоздает!), да еще и точно передает цвет будущего тиражного оттиска, необходимо, чтобы система обладала следующими функциями:

  • в программу, управляющую работой принтера, должен попадать (в виде битовых карт или каким-либо другим образом) именно тот растр, который пойдет на ФНА или СtР;

  • программа должна производить адаптацию размера и цвета растровых точек с тем, чтобы не только воспроизвести их на принтере, но и чтобы их цвет был таким же, как на будущем тиражном оттиске.

Первое условие может быть выполнено либо при непосредственном управлении принтером из существующей системы WorkFlow, либо сохранением битовых карт отрастрированного файла (обычно это форматы TIFF Bitmap, PCX и др., упакованные различными методами) с их последующей обработкой и выводе на принтер с помощью программ третьего производителя. Дополнительным преимуществом системы, построенной таким способом, будет использование ROOM-технологии (Rip once output many, однократное растрирование и многократный вывод).

Рис. 2. Принципиальная схема работы цветопробной системы, построенной на основе растрового процессора Best ScreenProof