Главная » Все файлы » Просмотр файлов из архивов » Документы » В.Г. Баула - Введение в архитектуру ЭВМ и системы программирования

В.Г. Баула - Введение в архитектуру ЭВМ и системы программирования, страница 6

2019-04-28СтудИзба

Описание файла

Документ из архива "В.Г. Баула - Введение в архитектуру ЭВМ и системы программирования", который расположен в категории "". Всё это находится в предмете "архитектура эвм" из 2 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Онлайн просмотр документа "В.Г. Баула - Введение в архитектуру ЭВМ и системы программирования"

Текст 6 страницы из документа "В.Г. Баула - Введение в архитектуру ЭВМ и системы программирования"

R1 := <A4>; S := S КОП2 R1; <A1> := S

4.2. Сравнительный анализ ЭВМ различной адресности

При изучении ЭВМ с разным количеством адресов естественно встаёт вопрос, какая архитектура лучше, например, даёт программы, занимающие меньше места в памяти (что было весьма актуально для первых ЭВМ). Исследуем этот вопрос, составив небольшой фрагмент программы для ЭВМ с различной адресностью. В качестве примера рассмотрим реализацию оператора присваивания, который содержит типичный набор операций: x := a/(a+b)2. В наших примерах мы будем использовать мнемонические коды операций и мнемонические имена для номеров ячеек памяти, в которых хранятся переменные (т.е. мы не будем производить явного распределения памяти, так как это несущественно для нашего исследования). Кроме того, не будем конкретизировать тип величин, это тоже не влияет на размер программы.

  • Трёхадресная машина.

СЛ

x

a

B

X := a+b

УМН

x

x

X

X := (a+b)2

ДЕЛ

x

a

x

X := a/(a+b)2

Длина программы: 3*10 = 30 байт.

  • Двухадресная машина.

ПЕР

R

a

R := a

СЛ

R

b

R := a+b

УМН

R

R

R := (a+b)2

ПЕР

X

a

x := a;

ДЕЛ

X

R

x := a/(a+b)2

Длина программы: 5*7 = 35 байт.

  • Одноадресная машина.

СЧ

A

S := a

СЛ

B

S := a+b

ЗП

X

x := a+b

УМН

X

x := (a+b)2

ЗП

X

СЧ

A

S := a/(a+b)2

ДЕЛ

X

ЗП

X

Длина программы: 8*4 = 32 байта.

  • Безадресная машина.

ВСТЕК

A

Поместить a в стек

ВСТЕК

Дублировать вершину стека

ВСТЕК

B

Теперь в стеке 3 числа: b,a,a

СЛ

В стеке два числа: b+a, a

ВСТЕК

Дублировать вершину стека, в стеке b+a,b+a,a

УМН

В стеке (a+b)2,a

ОБМЕН

Поменять местами два верхних элемента стека

ДЕЛ

В стеке a/(a+b)2

ИЗСТЕКА

X

Запись результата из стека в x

В данной программе использовались команды разной длины (безадресные и одноадресные). Длина программы: 3*4 + 6*1 = 18 байт.

Наше небольшое исследование показало, что архитектура ЭВМ с безадресными командами даёт наиболее компактные программы. В начале развития вычислительной техники такие компьютеры были весьма распространены, их, в частности, выпускала известная фирма Барроуз (Burroughs). Однако в дальнейшем были предложены ЭВМ с другой архитектурой, которая позволила писать не менее компактные программ, и в настоящее время стековые ЭВМ используются редко.

4.3. Дробно-адресная архитектура

Далее мы рассмотрим архитектуру ЭВМ, которые называются компьютерами с адресуемыми регистрами, в русскоязычной литературе они часто называются дробно-адресными [3,4] (смысл этого названия мы скоро выясним). Эти компьютеры должны давать возможность писать такие же компактные программы, как и компьютеры с безадресной системой команд, но при этом они обладают рядом дополнительных достоинств.

Компьютеры дробно-адресной архитектуры нарушают один из принципов фон Неймана – принцип однородности памяти. Будем считать, что память, к которой может непосредственно обращаться центральный процессор, состоит из двух частей, каждая со своей независимой нумерацией ячеек. Одна из этих частей называется адресуемой регистровой памятью и имеет небольшой объём (порядка десятков ячеек), а другая называется основной (оперативной) памятью большого объёма. Ячейка каждого из видов памяти имеет свой адрес, но в случае с маленькой регистровой памятью этот адрес имеет размер в несколько раз меньший, чем адрес ячейки основной памяти.

Например, рассмотрим двухадресную ЭВМ, в которой регистровая память состоит из 16 ячеек. В этом случае адрес каждого регистра лежит в диапазоне 015, и будет помещаться в 4 бита, а основная память содержит 220 ячеек и адрес каждой ячейки занимает 20 двоичных разрядов. В такой ЭВМ в качестве адресов операндов каждой команды могут быть или адреса двух регистров, или адрес регистра и адрес ячейки основной памяти. Адреса регистров на схемах команд будем обозначать R1 и R2, а адрес основной памяти A1 или A2. Первый вид команд будем называть командами формата регистр-регистр (обозначается RR), а вторые – формата регистр-память (обозначается RX). В этом случае для одного кода операции (например, сложения) мы получим команды двух форматов длины 2 и 4 байта соответственно:

КОП

R1

R2

= 2 байта

1 байт

1 байт

КОП

R1

A2

= 4 байта

8 бит

4 бита

20 бит

В качестве преимущества этой архитектуры нужно отметить, что ячейки регистровой памяти размещаются внутри центрального процессора, и, имея статус регистров, позволяют производить на них арифметические и логические операции (что, как мы помним, в основной памяти невозможно). Кроме того, это обеспечивает быстрый доступ к хранимым на регистрах данным (не требуется делать обмен с расположенной отдельно от центрального процессора основной памятью).

Скажем теперь, что такая архитектура получила название дробно-адресной потому, что адрес ячейки регистровой памяти составляет какую-то часть адреса ячейки большой основной памяти. В нашем примере соответствующее отношение равно правильной дроби 1/5.

Из рассмотренного выше можно сделать вывод, что при программировании на ЭВМ с такой архитектурой желательно как можно чаще оперировать с регистровой памятью и как можно реже обращаться к большой основной памяти, такого принципа мы и будем придерживаться. Теперь для нашей дробно-адресной машины составим фрагмент программы, который реализует, как и в предыдущих примерах, арифметический оператор присваивания x:=a/(a+b)2 . Мнемонические коды операций задают арифметические операции с обычным смыслом. Точка с запятой, как это принято в языке Ассемблера, задаёт комментарий к команде:

...

СЧ R1,a; R1 := a

СЧ R2,b; R2 := b

СЛ R2,R1; R2 := b+a=a+b

УМН R2,R2; R2 := (a+b)2

ДЕЛ R1,R2; R1 := a/(a+b)2

ЗП x,R1; x := R1= a/(a+b)2

...

Длина этого фрагмента программы равна 3*4+3*2 = 18 байт. Как видим, данная архитектура не уступает стековой (безадресной) архитектуре по длине получаемых программ.

Рассмотрим теперь недостатки дробно-адресной архитектуры ЭВМ. Если ранее для каждой арифметической операции было необходимо реализовать по одной команде для целых и вещественных чисел, то теперь число этих команд возросло вдвое из-за необходимости реализовывать эти команды как в формате RR, так и в формате RX. Это приводит к существенному усложнению устройства управления, которое отныне должно поддерживать бόльшее количество операций.

Однако преимущества дробно-адресной архитектуры настолько очевидны, что её имеют большинство современных машин. Разумеется, в них есть и много новых особенностей, некоторые из которых мы рассмотрим далее в нашем курсе.

При работе с дробно-адресной архитектурой мы встречаемся с командами разного формата (и, соответственно, разной длины). Как говорится, современные ЭВМ обладают многообразием форматов команд. Например, на тех компьютерах, на которых Вы сейчас выполняете свои практические работы, реализованы около десяти форматов, а длина команд составляет от 1 до 6 байт.

4.4. Способы адресации

Введём следующее определение. Способ адресации – это способ задания операндов внутри машинной команды. Другими словами это правила, по которым заданные в команде (двоичные) числа определяют местонахождение и значение операндов для данной команды. Как правило, способ адресации операндов определяется только кодом операции команды. Для лучшего понимания этого понятия рассмотрим операцию сложения двух чисел в одноадресной ЭВМ. Мнемоника кодов операций будет указывать на способ адресации.

  • Прямой способ адресации.

СЛ

2

S := S + <2>

При этом способе адресации (только этот способ мы использовали до сих пор) число на месте операнда задаёт адрес ячейки основной памяти, в котором и содержится необходимый в команде операнд. Мы будем в угловых скобках обозначать содержимое ячейки основной памяти с данным адресом. Так, в приведённом выше примере <2> обозначает содержимое ячейки с адресом 2. В этой ячейки, конечно же, скорее всего не хранится число 2.

  • Непосредственный способ адресации.

СЛН

2

S := S + 2

При таком способе адресации поле адреса команды содержит, как говорят, непосредственный операнд. Разумеется, такие операнды могут быть только (неотрицательными) целыми числами, по длине не превышающими максимального значения в поле адреса.

  • Косвенный способ адресации.

СЛК

2

S := S + <<2>>

Здесь число на месте операнда задаёт адрес ячейки памяти, содержимое которой, в свою очередь, трактуется как целое число – адрес необходимого операнда в памяти ЭВМ.

В качестве примера выполним несколько команд сложения с различными способами адресации для одноадресной ЭВМ и рассмотрим значение регистра-сумматора S после выполнения этих команд (см. рис. 4.1). Справа на этом рисунке показаны первые ячейки памяти и хранимые в них целые числа.

. . .

Адрес

Значение

СЧ 0; S := 0

000

0

СЛ 2; S := 3

001

2

СЛН 2; S := 5

002

3

СЛК 2; S := 13

003

8

. . .

. . .

. . .

Рис. 4.1. Значение регистра сумматора после выполнения команд

сложения с различными способами адресации.

Упражнение. Добавьте в язык учебной машины УМ-3 новую команду пересылки, которая использует косвенную адресацию по своему третьему адресу, и покажите, что в этом случае можно обрабатывать массивы без использования самомодифицирующийся программ.

4.5. Многообразие форматов данных

Современные ЭВМ позволяют совершать операции над целыми и вещественными числами разной длины. Это вызвано чисто практическими соображениями. Например, если нужное нам целое число помещается в один байт, но неэкономно использовать под его хранение два или более байта. Во избежание такого неоправданного расхода памяти введены соответствующие форматы данных, отражающие представление в памяти ЭВМ чисел разной длины. В зависимости от размера числа, оно может занимать 1, 2, 4 и более байт. Приведённая ниже таблица иллюстрирует многообразие форматов данных (для представления целых чисел).

Размер (байт)

Название формата

1

Короткое

2

Длинное

4

Сверхдлинное

Многообразие форматов данных требует усложнения архитектуры регистровой памяти. Теперь регистры должны уметь хранить и обрабатывать данные разной длины.

4.6. Форматы команд

Для операций с разными способами адресации и разными форматами данных необходимо введение различных форматов команд, которые, естественно, имеют разную длину. Обычно это такие форматы команд (в скобках указано их мнемоническое обозначение):

  • регистр – регистр (RR);

  • регистр – память, память – регистр (RX);

  • регистр – непосредственный операнд в команде (RI);

  • память – непосредственный операнд в команде (SI);

  • память – память, т.е. оба операнда в основной памяти (SS).

Многообразие форматов команд и данных позволяет писать более компактные и эффективные программы на языке машины, однако, как уже упоминалось, сильно усложняют центральный процессор ЭВМ.

4.7. Базирование адресов

Для дальнейшего уменьшения объёма программы современные ЭВМ используют базирование адресов. Изучение этого понятия проведём на следующем примере. Пусть в программе на одноадресной машине необходимо реализовать арифметический оператор присваивания X:=(A+B)2. Ниже приведена эта часть программы с соответствующими комментариями (напомним, что S – это регистр сумматора одноадресной ЭВМ):

...

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5302
Авторов
на СтудИзбе
416
Средний доход
с одного платного файла
Обучение Подробнее