1 - Введение (Лекции), страница 4

2018-02-14СтудИзба

Описание файла

Файл "1 - Введение" внутри архива находится в папке "Лекции". Документ из архива "Лекции", который расположен в категории "". Всё это находится в предмете "метрология, стандартизация и сертификация (мсис)" из 5 семестр, которые можно найти в файловом архиве МПУ. Не смотря на прямую связь этого архива с МПУ, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "метрология, стандартизация и сертификация (мсис)" в общих файлах.

Онлайн просмотр документа "1 - Введение"

Текст 4 страницы из документа "1 - Введение"

Геометрические представления о размахе R результатов измерений можно получить с использованием точечной диаграммы результатов многократных измерений одной и той же физической величины, которая строится в координатной системе "измеренные значения X – номер измерения N" в любом удобном масштабе.

Воспроизводимость результатов измерений (воспроизводим ость измерений) – близость результатов измерений одной и той же величины, полученных в разных местах, разными методами, разными средствами, разными операторами, в разное время, но приведенных к одним и тем же условиям измерений (температуре, давлению, влажности и др.). Воспроизводимость можно оценить, например, после выполнения нескольких серий многократных измерений одной и той же физической величины с использованием разных методик выполнения измерений. В качестве оценок воспроизводимости могут служить разности средних значений в сериях, средних квадратических погрешностей серий, разности экстремальных результатов разных серий и другие оценки.

Единство измеренийсостояние измерений, характеризующееся тем, что их результаты выражаются в узаконенных единицах, размеры которых в установленных пределах равны размерам единиц, воспроизводимых первичными эталонами, а погрешности результатов измерений известны и с заданной вероятностью не выходят за установленные пределы.

Представим свойства, определяющие качество измерений (процесса измерений, измерительной процедуры) в виде иерархической структурной схемы, ограничившись для начала тремя уровнями. Для первого уровня схемы предлагается три блока свойств (рис.1): "техническая эффективность", "экономичность" и "безопасность", хотя техническое совершенство измерений, как и любого иного объекта, не может быть независимым от экономичности, а безопасность можно рассматривать в двойной связи (и с экономичностью, и с техническими свойствами). При построении структуры надо учитывать, что абсолютно независимых страт (классификационных групп) не бывает.

При анализе экономичности следует рассматривать проектирование МВИ, подготовку и проведение измерений, включая обработку результатов. При анализе безопасности обращают внимание на безопасность оператора, ближайшего и дальнего окружения (включая экологическую безопасность), причем необходимо учитывать как непосредственные опасные воздействия, так и отдаленные последствия в виде слабых, накапливающихся и/или отложенных неблагоприятных результатов.

В настоящее время нет общепринятых подходов к оценке качества измерений, потому предложенные материалы (схема, свойства, рекомендации по декомпозиции качества) подлежат анализу и критике, дальнейшему развитию и совершенствованию, поскольку представленные материалы не очень удобны для применения в конкретных метрологических ситуациях.

КЛАССИФИКАЦИЯ ИЗМЕРЕНИЙ. ПОНЯТИЕ О КАЧЕСТВЕ ИЗМЕРЕНИЙ

В наиболее широком смысле к "измерениям" относят обнаружение наличия или отсутствия каких-либо свойств, качественную оценку любого свойства, сопоставление величин с нормами, оценку свойства по косвенным показателям и ряд других действий. В отличие от геометрии, социометрии, антропометрии, и квалиметрии, имеющей наиболее широкий набор объектов оценки, метрология занимается измерениями физических величин. Потому мы не будем рассматривать получение экспертных оценок, а сосредоточимся только на измерениях тех параметров, которые подлежат объективной оценке с использованием средств измерений. Такие параметры в большинстве представляют собой физические величины, а их экспериментальные оценки называют аппаратурными или инструментальными в отличие от экспертных (органолептических) оценок, при получении которых инструментарием являются чувства человека.

Измерение физической величинысовокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины.

Основное уравнение измерения физической величины можно записать в виде

Q = Nq,

где Q – измеряемая физическая величина;

q – единица физической величины;

N – числовое значение физической величины, которым определяется соотношение измеряемой физической величины и единицы, использованной при измерениях.

Из уравнения измерения следует, что в основе любого измерения лежит сравнение исследуемой физической величины с аналогичной величиной определенного размера, принятой за единицу. Суть измерения состоит в определении числового значения физической величины. Этот процесс называют измерительным преобразованием, подчеркивая связь измеряемой физической величины с полученным числом.

Измерительное преобразование всегда осуществляется с использованием некого физического закона или эффекта, который рассматривают как принцип, являющийся основой измерения. Для систематизации подхода к измерению, для выявления и оценки погрешностей, прежде всего, необходимо классифицировать сами измерения.

Классификация измерений

Видом измерений названа часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин. Приведены примеры видов измерений: измерения электрического сопротивления, электродвижущей силы, электрического напряжения, магнитной индукции, относящиеся к области электрических и магнитных измерений. Дополнительно выделены подвиды измерений – часть вида измерений, выделяющаяся особенностями измерений однородной величины (по диапазону, по размеру величины и др.) и примеры подвидов (измерения больших длин, имеющих порядок десятков, сотен, тысяч километров или измерения сверхмалых длин — толщин пленок как подвиды измерений длины).

Более широкая трактовка видов измерений (с использованием различных оснований классификации) позволяет отнести к ним также приведенные в НД, но не сформированные в классификационные группы измерения, характеризуемые следующими альтернативными парами терминов:

  • прямые и косвенные измерения,

  • совокупные и совместные измерения,

  • абсолютные и относительные измерения,

  • однократные и многократные измерения,

  • статические и динамические измерения,

  • равноточные и неравноточные измерения.

Прямые и косвенные измерения различают в зависимости от способа получения результата измерений. Прямое измерениеизмерение, при котором искомое значение физической величины получают непосредственно. В примечании отмечено, что при строгом подходе существуют только прямые измерения и предлагается применять термин прямой метод измерений. Это предложение нельзя назвать удачным (см. далее классификацию методов измерений). Как примеры прямых измерений приведены: измерение длины детали микрометром, силы тока амперметром, массы на весах.

В ходе прямых измерений искомое значение величины определяют непосредственно по устройству отображения измерительной информации применяемого средства измерений. Формально без учета погрешности измерения они могут быть описаны выражением

Q = х,

где Q – измеряемая величина,

х – результат измерения.

Косвенное измерениеопределение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. Там же сказано, что вместо термина косвенное измерение часто применяют термин косвенный метод измерений (это вариант явно неудачный).

При косвенных измерениях значение величины рассчитывают на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. Формальная запись такого измерения

Q = F (X, Y, Z,…),

где X, Y, Z,… – результаты прямых измерений.

С различением прямых и косвенных измерений связаны дискуссии и ряд недоразумений. Например, споры о том, являются ли косвенными измерения радиального биения (b = RmaxRmin) или высоты детали при настройке прибора на отличное от нулевого деление. Некоторые метрологи отказываются от признания косвенных измерений как таковых ("существуют только прямые измерения, а все остальное – математическая обработка результатов"). Можно предложить компромиссное решение: признать за косвенными измерениями право на существование, поскольку специфика математической обработки результатов таких измерений и оценки их погрешностей никем не оспаривается.

Прямые и косвенные измерения характеризуют измерения некоторой конкретной одиночной физической величины. Измерение любого множества физических величин классифицируется в соответствии с однородностью (или неоднородностью) измеряемых величин. На этом и построено различение совокупных и совместных измерений.

Совокупные измерения – проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях. Приведенный пример – определение значений массы отдельных гирь набора по известному значению массы одной из гирь и по результатам измерений (сравнений) масс различных сочетаний гирь подтверждает, что определению соответствуют не измерения, а специальные исследования, направленные на поиск погрешностей ряда мер массы.

Совместные измерения – проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними. В качестве примера можно рассмотреть одновременные измерения длин и температур для нахождения температурного коэффициента линейного расширения. В более узкой трактовке совместные измерения подразумевают измерение нескольких неодноименных величин (X, Y, Z и т.д.). Примерами таких измерений могут быть комплексные измерения электрических, силовых и термодинамических параметров электродвигателя, а также измерения параметров движения и состояния транспортного средства (скорость, запас горючего, температура двигателя и др.).

Абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.

Это крайне неудачное определение сопровождается примером (измерение силы F = mg основано на измерении основной величины — массы т и использовании физической постоянной g в точке измерения массы), который подтверждает нелепость предложенной трактовки. В примечании сказано, что понятие абсолютное измерение применяется как противоположное понятию относительное измерение и рассматривается как измерение величины в ее единицах. В таком понимании это понятие находит все большее и большее применение

Относительное измерение – измерение отношения величины к одноименной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную.

Многократное измерение – измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т. е. состоящее из ряда однократных измерений.

Многократные измерения проводят или для страховки от грубых погрешностей или для последующей математической обработки результатов (расчет средних значений, статистическая оценка отклонений и др.). Многократные измерения называют также «измерения с многократными наблюдениями». В зависимости от поставленной цели число повторных измерений может колебаться в широких пределах (от двух измерений до нескольких десятков и даже сотен).

Статическое измерениеизмерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения. Примеры (измерение длины детали при нормальной температуре и измерение размеров земельного участка) скорее запутывают, чем проясняют ситуацию.

Динамическое измерениеизмерение изменяющейся по размеру физической величины.

При измерении в динамическом режиме появляются дополнительные динамические погрешности, связанные со слишком быстрым изменением либо самой измеряемой физической величины, либо входного сигнала измерительной информации, поступающего от постоянной измеряемой величины. Например, измерение диаметров тел качения (постоянных физических величин) в подшипниковой промышленности осуществляется с использованием контрольно-сортировочных автоматов. При этом скорость изменения измерительной информации на входе может оказаться соизмеримой со скоростью измерительных преобразований в цепи прибора. Измерение температуры с помощью ртутного термометра несоизмеримо медленнее измерений электронными термометрами, следовательно, применяемые средства измерений могут в значительной степени определить режим измерений.

Равноточные измерения – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью.

Неравноточные измерения – ряд измерений какой-либо величины, выполненных различающимися по точности средствами измерений и (или) в разных условиях.

В примечаниях к двум последним определениям предлагается до обработки ряда измерений, убедиться в том, что все измерения являются равноточными, а неравноточные измерения обрабатывать с учетом веса отдельных измерений, входящих в ряд.

Равноточными называют серии измерений 1 и 2, для которых оценки погрешностей i и j можно считать практически одинаковыми

(1  2),

а к неравноточным относят измерения с различающимися погрешностями

(1  2).

Измерения в двух сериях считают равно рассеянными (1  2), или при (1  2)

неравно рассеянными (в зависимости от совпадения или различия оценок случайных составляющих погрешностей измерений сравниваемых серий 1 и 2).

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее