1 - Введение (Лекции)

2018-02-14СтудИзба

Описание файла

Файл "1 - Введение" внутри архива находится в папке "Лекции". Документ из архива "Лекции", который расположен в категории "". Всё это находится в предмете "метрология, стандартизация и сертификация (мсис)" из 5 семестр, которые можно найти в файловом архиве МПУ. Не смотря на прямую связь этого архива с МПУ, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "метрология, стандартизация и сертификация (мсис)" в общих файлах.

Онлайн просмотр документа "1 - Введение"

Текст из документа "1 - Введение"

ВВЕДЕНИЕ

Метрологиянаука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Неоднозначно трактуемые измерения (от количественной оценки физических величин до приписывания чисел субъективно оцениваемым свойствам) позволяют сторонникам "широкой трактовки" измерений распространять область интересов науки об измерениях за пределы "чистой метрологии". В результате метрология смешивается с квалиметрией – областью науки, занимающейся количественной оценкой качества объектов и их частных свойств.

Измерения некоторых исследуемых свойств можно рассматривать как однозначное отображение элементов эмпирической реляционной системы (Q) на некоторую числовую реляционную систему (N), причем отображение (Q) на (N) должно быть изоморфным. (Изоморфизм в математике – свойство одинаковости строения каких-либо совокупностей элементов, совершенно безразличное к природе этих элементов).

Q = Nq,

где Q – измеряемая величина;

q – единица измеряемой величины;

N – числовое значение, определяющее соотношение между Q и q.

Следует заметить, что данное теоретическое положение идеализированно, поскольку в нем не учитываются погрешности измерений, которыми специально занимается метрология. Метрология в нашем понимании занимается исключительно измерениями физических величин на макроуровне.

Измерение физической величины (измерение величины; измерение) – совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины. В ранее действовавшем нормативном документе имерение трактовали как нахождение значения физической величины опытным путем с помощью специальных технических средств. Принципиальных отличий в определениях не наблюдается.

От термина «измерение» происходит термин «измерять», наряду с которым нередко применяются такие термины, как «мерить», «обмерять», «замерять», «промерять». Эти термины нестандартные и применять их не следует.

Физическая величина (величина; ФВ) – одно из свойств физического объекта (физической системы, явления или процесса), общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них. Как правило любой объект измерения характеризуется некоторым множеством физических величин (ФВ1,..., ФВn, или Q1,..., Qn). Например, любой предмет имеет массу (одна физическая величина), размеры (множество физических величин номинально разных и номинально одинаковых), плотность, твердость, электрические и магнитные характеристики. Физическая величина, присущая конкретному объекту, не является его единственной характеристикой. Поэтому измерение некоторой заданной физической величины можно представить моделью на рис. 2. Очевидно также, что результат измерения Хi не может идеально отражать измеряемое свойство и отличается от истинного значения измеряемой физической величины Qi.

Точность результата измерений (точность измерений) одна из характеристик качества измерения, отражающая близость к нулю погрешности результата измерения.

Точность измерения тем выше, чем меньше его погрешность.

Погрешность результата измерения (погрешность измерения) – отклонение результата измерения от истинного (действительного) значения измеряемой величины.

Погрешность измерения можно представить в виде разности между результатом измерения (полученным при измерении значением физической величины) и истинным значением физической величины

= х – Q,

где ∆ – погрешность измерения,

х – результат измерения (полученное при измерении значение физической величины),

Q – истинное значение физической величины.

Необходимость измерений в любом промышленном производстве проиллюстрирована рис.3.

Измерения необходимы для оценки любого объекта трансформации (сырья, заготовки, детали, сборочной единицы) до ее начала, во время ее проведения и по окончании. В любом технологическом процессе надо знать, с чем приходится работать, чтобы планировать сам процесс, следить за тем как процесс идет, чтобы при необходимости корректировать его. Результат переработки исходного объекта тоже подлежит измерениям для оценки его качества и принятия управляющих решений (пропустить далее в обработку, продажу, эксплуатацию, забраковать, вернуть на переработку, потребовать изменения техпроцесса...).

Достоверные результаты исследований и выводы из них могут быть получены только при "опережающей точности измерений". Любой тонкий эффект можно зафиксировать только тогда, когда измерения позволяют выделить его из информационного шума, в том числе и обусловленного погрешностями измерений.

Обмен результатами научной деятельности и международная кооперация в промышленности и торговле требуют обеспечения одинаковой достоверности всех результатов производственных и научных измерений. Поэтому в метрологии вводятся такие понятия, как единство измерений и единообразие средств измерений.

Единство измеренийсостояние измерений, характеризующееся тем, что их результаты выражаются в узаконенных единицах, размеры которых в установленных пределах равны размерам единиц, воспроизводимых первичными эталонами, а погрешности результатов измерений известны и с заданной вероятностью не выходят за установленные пределы.

Обеспечение единства измерений необходимо для обеспечения современного производства с разделением труда и кооперацией как в масштабах одной страны, так и в международных промышленно экономических отношениях. Вот почему активно и с давних пор работают международные метрологические организации, принимаются общие для всех метрологические стандарты, гармонизируются требования к измерениям, к средствам измерений, к их поверке.

Под единообразием средств измерений понимают состояние средств измерений, характеризующееся тем, что они проградуированы в узаконенных единицах и их метрологические свойства соответствуют нормам. Единообразие средств измерений есть необходимое, но недостаточное условие соблюдения единства измерений. В свою очередь, для обеспечения такого единообразия приходится разрабатывать представления об эталонах единиц физических величин, создавать эталоны как технические устройства, передавать значение единицы от эталонов другим, менее точным средствам измерений.

Метрология использует для повышения точности измерений новейшие достижения физики и других наук. Постоянно создаются новые, все более точные средства измерений, включая эталоны, совершенствуются методы измерений и передачи единиц физических величин рабочим средствам измерений, а также методы выявления и оценки погрешностей измерений. В соответствии с требованиями обеспечения единства измерений метрология уделяет особое внимание поиску и исключению систематических погрешностей измерений, а также вероятностной оценке случайных погрешностей, которые в принципе невозможно прогнозировать другими методами.

Особое место в метрологии занимает математическая обработка результатов измерений. Широко используется аппарат теории вероятностей и математической статистики для оценки случайных составляющих погрешности измерений. Для обработки результатов косвенных измерений, для построения моделей объектов измерений, для оценки систематических погрешностей используют различные разделы математического анализа, аналитической геометрии и других областей математики.

На сегодняшний день можно признать существование объективно сложившихся теоретических основ в следующих областях измерений:

  • физические (технические, электрические, оптические) измерения;

  • квантовомеханические измерения;

  • психологические измерения;

  • кибернетические измерения;

  • математические измерения;

  • другие измерения.

Физическими измерениями занимается метрология, трактуемая как "теория погрешностей измерения".

Квантово-механические измерения фактически основаны на взаимодействии микрообъекта с измерительным макроприбором.

Психологические и им подобные измерения (измерения в социологии, психологии, системотехнике и им подобных областях) сводятся к выбору типа шкалы и "помещению" объекта в некоторую ее область.

В кибернетических измерениях в первую очередь рассматривают воздействие помех в измерительном канале на искажение измерительной информации. Специально для этих целей разработана информационная теория измерений.

Математические измерения основаны на допущении "идеальных измерений", результаты которых свободны от погрешностей. Кроме того, изучение измерения как некоторого способа (алгоритма) получения числового результата привело к разработке "алгоритмической теории измерения".

ШКАЛЫ И ПРИМЕНЕНИЕ ИХ В МЕТРОЛОГИИ

Оценку любого свойства некоторого объекта можно рассматривать как измерение качества данного свойства. Поэтому измерения в самом широком смысле термина являются научно-технической базой квалиметрии (квалиметрия переводится как "измерение качества"). Квалиметрия – область научных знаний, в рамках которой исследуются проблемы количественной оценки качества продукции.

В соответствии с ГОСТ 15467-79 квалиметрия – это научная область, объединяющая количественные методы оценки качества, используемые для обоснования решений, принимаемых при управлении качеством продукции и стандартизации. Предметом изучения квалиметрии является качество объектов с точки зрения возможностей его количественного выражения или описания.

Поскольку качество объекта представляет собой совокупность всех его свойств, количественная оценка качества всегда начинается с количественной оценки его отдельных свойств. При этом под оценкой свойства объекта подразумевается определение местоположения данного свойства на определенной оценочной шкале. В квалиметрии принято использовать следующие виды шкал:

- шкала наименований (номинационная или номинальная шкала);

- шкала порядка (ординальная или ранговая шкала);

- шкала интервалов (интервальная шкала);

- шкала отношений.

Иногда к этим шкалам добавляют еще "абсолютную" шкалу.

Сводные сведения о шкалах представлены в табл. 1.

В бытовом плане шкалами наименований являются шкала фамилий (можно вместе с инициалами или именем и отчеством), шкала личных номеров в документах, адреса, номера экзаменационных билетов, номера при статейных ссылок на литературные источники. Видно, что такая шкала может состоять из любых знаков (числа, наименования, другие условные обозначения). Использование номеров не означает, что мы имеем дело с количественными оценками, напротив, любые цифры или числа такой шкалы – не более чем кодовые знаки. Всем понятно, что литературный источник 7 не лучше (толще, важнее, достовернее...) и не хуже, чем источник 8, хотя стоит перед ним. Они просто перечислены в порядке упоминания или по алфавиту.

Шкала наименований позволяет составлять классификации, идентифицировать и различать объекты, а также набирать статистику на каждый из идентифицируемых объектов.

В отличие от шкалы наименований, шкала порядка устанавливает фиксированный порядок расположения объектов. Такие шкалы широко применяются в спорте при определении мест команд или спортсменов. Всем учащимся известны балльные оценки знаний на экзаменах, которые тоже являются фиксированными ступенями шкалы порядка. Известным примером реализации такой шкалы является построенная по росту группа людей, где каждый последующий ниже всех предыдущих.

Можно отметить две существенные особенности шкалы порядка:

  • незакономерные (какие сложились) интервалы между соседними ступенями шкалы;

  • инвариантность объектов к используемым оценочным единицам и к добавлению константы.

Мы можем измерять рост людей своей пядью или более культурно (в метрах и сантиметрах, футах и дюймах, в ярдах, аршинах, саженях или любых других единицах) – порядок в группе останется неизменным. Мы можем выстроить всех босиком или поставить на одинаковые каблуки-подставки, можем построить группу в неглубоком бассейне по высоте над уровнем воды – порядок сохранится. Шкала порядка позволяет не только сравнивать объекты, но и делать выводы об их упорядоченном расположении (всегда можно сказать, кто за кем, хотя нельзя определить на сколько отстает).

Сводные сведения о шкалах

Шкалу интервалов иногда называют шкалой равных или равномерных интервалов. Правильнее говорить о шкале закономерных интервалов (они могут быть построены не только равномерно, но и прогрессивно, экспоненциально, логарифмически). Принципиальное отличие от предыдущей шкалы в том, что положение на любой ступени шкалы интервалов жестко определено и соотношения точек шкалы поддаются точному расчету. Недостатком такой шкалы является неопределенность ее начала, которое устанавливают условно. Такой условностью является момент начала суток, отличающийся в разных часовых поясах, момент начала летоисчисления (1999 год от рождества Христова одновременно приходится на 5760 год по иудейскому календарю). Тем не менее, в сутках у всех 24 часа, а в году 365 суток, если год не високосный.

Каждая из представленных в таблице шкал является более мощной, чем расположенные выше, и вбирает в себя свойства всех предыдущих.

Шкала отношений имеет фиксированный ноль и полностью соответствует шкале чисел по определенности ступеней и возможностям оперирования элементами шкалы.

Что касается не включенной в таблицу "абсолютной" шкалы, по сути она является частным случаем шкалы отношений, но кроме фиксированной нулевой точки ("естественного нуля") имеет еще и "естественную единицу". Примерами таких шкал являются шкала количества целочисленных объектов, шкала коэффициента полезного действия, шкала относительной влажности и другие им подобные.

Для того, чтобы некоторое свойство объекта можно было оценить по той или иной шкале, необходимо чтобы на множестве однотипных по данному свойству объектов соблюдались определенные отношения. Поскольку мы предпочитаем объективную оценку свойства числом, то отношения на множестве объектов логичнее всего сопоставлять с аксиоматикой числа. Анализ соответствующих отношений позволит определить, какой тип шкалы применим для оцениваемых свойств объектов.

Аксиоматику числа можно представить в виде трех групп аксиом:

АКСИОМЫ ТОЖДЕСТВА

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5140
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее