48 (Электронные лекции)

2018-02-14СтудИзба

Описание файла

Файл "48" внутри архива находится в папке "Электронные лекции". Документ из архива "Электронные лекции", который расположен в категории "". Всё это находится в предмете "сопротивление материалов" из 3 семестр, которые можно найти в файловом архиве МПУ. Не смотря на прямую связь этого архива с МПУ, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "сопротивление материалов" в общих файлах.

Онлайн просмотр документа "48"

Текст из документа "48"

Лекция № 48. Основы вибропрочности конструкций

Постановка задачи. Явление Резонанса.

   До сих пор мы решали основную задачу сопротивления материалов, определяли размеры поперечных сечений частей конструкции и выбирали для них материал лишь при статическом действии нагрузок.

   Статическое действие нагрузок имеет место, когда при передаче давления от одной части конструкции на другую или при действии объемных сил механическое движение этих частей не меняется с течением времени. В этом случае каждый элемент конструкции находится в равновесии под действием внешних нагрузок и напряжений.

   Постоянство движения характеризуется тем, что скорость рассматриваемых деталей и каждой их части не меняется — отсутствует ускорение частиц этих элементов. Наличие же ускорения частиц рассматриваемого тела или соприкасающихся с ним деталей характеризует уже воздействие динамической нагрузки. Так, давление земли на подпорную стенку будет статической нагрузкой, так как ни стенка, ни земляная масса не движутся, — скорость их постоянна и равна нулю.

   Точно так же статическим будет действие поднимаемого груза на канат при постоянной скорости подъема груза. Наоборот, это действие будет динамическим, если груз поднимается с ускорением. Динамическую нагрузку испытывают шатуны паровых машин и двигателей внутреннего сгорания, так как отдельные элементы их движутся с переменной скоростью. В качестве других примеров конструкций, работающих на динамическую нагрузку, можно указать на фундамент машины, имеющей вращающиеся части, расположенные внецентренно относительно оси вращения, — они будут испытывать центростремительное ускорение; можно указать на фундамент и шток парового молота, так как боек молота при ковке теряет свою скорость за очень короткий период времени, что связано с сообщением ему весьма больших ускорений.

   Уже из этих примеров видно, что на практике мы можем встречаться с различными видами ускорения рассматриваемой детали или соприкасающихся с ней тел; оно может быть постоянным по величине и направлению или только по направлению; может быть знакопеременным.

   При переменных и знакопеременных напряжениях мы встречаемся с явлением разрушения от постепенно развивающейся трещины — с явлением усталости. При резком изменении скорости движения элемента конструкции в зависимости от передачи на него давлений от соседних деталей, когда имеет место явление удара, может обнаружиться хрупкость в таких материалах, которые при статическом действии нагрузок оказывались пластичными. Поэтому при проверке прочности деталей конструкций, подвергающихся действию динамических нагрузок, приходится интересоваться влиянием этих нагрузок не только на величину напряжений в детали, но и на сопротивляемость материала.

   Влияние ускорений точек деталей конструкции на напряженное состояние материала может быть учтено следующим образом. Если какое-либо тело движется с ускорением, то это значит, что на него передаются (к нему приложены) силы (давления) от других тел; по закону равенства действия и противодействия оно передает на эти тела равные приложенным силам и противоположно направленные реакции, называемые силами инерции. Это рассуждение применимо также и к каждому элементу движущегося с ускорением тела; этот элемент будет передавать на прилегающие части материала усилия, равные силе инерции этого элемента.

   Таким образом, при ускоренном движении частей конструкции в них возникают добавочные вполне реальные напряжения, которые эквивалентны статическим напряжениям, вызванным силами инерции; от каждого элемента стержня на соседние части материала будут передаваться такие напряжения, как будто бы к нему была приложена соответствующая сила инерции.

   Отсюда получаем практическое правило для определения напряжений в части конструкции, точки которой испытывают ускорения: надо вычислить эти ускорения и в дополнение к внешним силам, действующим на рассматриваемый элемент конструкции, нагрузить его соответствующими силами инерции. Дальше следует вести расчет так, как будто на стержень действует статическая нагрузка.

   Здесь надо различать три случая. Если величина и расположение внешних сил, приложенных к рассматриваемому элементу, не зависят от его деформаций, если эти деформации не изменяют характера движения стержня, то ускорения его точек вычисляются по правилам кинематики твердого тела, и учет динамических воздействий сводится к добавочной статической нагрузке соответствующими силами инерции. Это имеет место в большинстве практически важных случаев (за исключением удара).

   Если при этом ускорение будет меняться, то, как правило, возникнут колебания рассматриваемой части конструкции, которые могут в некоторых случаях дать явление, резонанса, связанное с резким увеличением деформаций и напряжений. Эти напряжения могут достигать весьма большой величины и будут прибавляться к тем, которые учитываются путем введения в расчет статической нагрузки силами инерции.

   Наконец, могут быть случаи (удар), когда величина ускорений, а значит, и соответствующих сил инерции будет зависеть от деформируемости рассматриваемых элементов; в этом случае при вычислении сил инерции приходится использовать и данные сопротивления материалов.

Способ проверки прочности для каждого из указанных случаев покажем на примерах.

 

Влияние резонанса на величину напряжений.

   Если на балке расположена машина с вращающимся грузом, имеющим эксцентриситет по отношению к оси вращения (Рис.1,). то



Рис.1. Расчетная схема неуравновешенного ротора машины

 

   Сила инерции груза будет вызывать в балке напряжения и деформации, периодически меняющие свой знак. Балка будет совершать колебания с периодом, равным периоду вращения груза. Это будут так называемые вынужденные колебания. Если период вынужденных колебаний совпадет с периодом свободных колебаний стержня, то мы получим явление резонанса, при котором амплитуда (размах) колебаний будет резко расти с течением времени. Наличие сил трения, сопротивление воздуха и т. д. ограничивают на практике рост этой амплитуды; однако она может достичь очень большой величины, значительно превышающей те деформации, которые испытывала бы конструкция под действием ускорений той же величины, но не меняющих знака.

   Известен случай, когда при резонансе угол закручивания вала увеличился в шесть раз по сравнению с тем углом, который был до наступления резонанса, — это был случай поломки коленчатых валов двигателей «Цеппелина» при первом его перелете через Атлантический океан.

   Таким образом, явление резонанса, если оно длится некоторое время, а не сбивается немедленно по возникновении, ведет к постепенному росту деформаций и пропорциональных им напряжений в конструкции, что может вызвать поломку. Поэтому, как правило, при проектировании конструкций, испытывающих переменные ускорения с постоянным периодом, необходимо избежать возникновения явления резонанса.

   Так как период раскачивающих (возмущающих) сил обычно является заданным, то в распоряжении проектировщика остается лишь период собственных свободных колебаний конструкции, который надо подобрать так, чтобы он в должной мере отличался от периода изменений возмущающей силы.

   Вопросы, связанные с определением периода, частоты и амплитуды свободных и вынужденных колебаний, рассматриваются в курсах теоретической механики. Поэтому ограничимся лишь приложением полученных там выводов к определению напряжений и проверке прочности элементов конструкции при колебаниях.

 

Вычисление напряжений при колебаниях.

   Упругая система, выведенная каким-либо путем из равновесия, приходит в колебательное движение. Колебания происходят около положения упругого равновесия, при котором в нагруженной системе имели место статические деформации и соответствующие им статические напряжения ( или — в зависимости от вида деформации). При колебаниях к статическим деформациям добавляются динамические, зависящие от вида колебательного движения и от величины размаха (амплитуды) колебаний. В связи с этим изменяются и напряжения . Таким образом, при расчете колеблющейся системы на прочность необходимо уметь вычислять динамические добавки к статическим деформациям и соответствующим им напряжениям.

   Во многих случаях характер колебаний системы может быть определен одной какой-нибудь величиной (одной координатой). Такие системы называются системами с одной степенью свободы; таковы, например, растянутая или сжатая незначительного веса пружина с грузом на конце, совершающая продольные колебания; небольшого (сравнительно с грузом Q) собственного веса балка, изображенная на Рис.2, колеблющаяся в направлении, перпендикулярном к ее оси, и т. п.



Рис.2. Динамическая модель колебаний системы с одной степенью свободы.

 

   При колебаниях систем с одною степенью свободы полные деформации системы в каком либо сечении могут быть найдены путем сложения статической деформации с добавочной деформацией при колебаниях. Для проверки прочности системы, очевидно, необходимо найти наиболее опасное сечение с наибольшей в процессе колебаний суммарной величиной деформации. В простейших случаях для этого потребуется сложить наибольшую статическую деформацию с наибольшей амплитудой колебаний А, т. е.

Пока система деформируется в пределах упругости, напряжения пропорциональны деформациям. Поэтому

где

— коэффициент динамичности при колебаниях. Условие прочности в этом случае должно иметь такой вид:

   Таким образом задача нахождения динамических напряжений и проверки прочности при колебаниях может быть сведена к определению статических напряжений и коэффициента динамичности . Так как последний зависит от величины А, то нужно уметь определять наибольшее значение амплитуды колебаний в разных случаях.

   Как известно, дифференциальное уравнение движения колеблющегося груза Q в случае свободных колебаний можно представить в виде уравнения равновесия, в котором кроме внешней силы (веса груза Q) и силы упругого сопротивления системы учитывается также и сила инерции:

(1)

   Здесь х — координата, полностью определяющая положение груза Q во время колебаний; Р — полное упругое сопротивление системы при колебаниях; — так называемая восстанавливающая сила (добавочное упругое усилие, возникающее в системе в результате перемещения точки приложения груза Q на расстояние х при колебаниях), которую в пределах упругости можно считать пропорциональной координате х ( ); с — коэффициент пропорциональности, представляющий собой усилие, необходимое для того, чтобы вызвать равную единице статическую деформацию системы в направлении действия груза Q. Если статическая деформация от груза Q равна , то .

   Решение уравнения (1) приводит к таким формулам для вычисления частоты и периода свободных колебаний:

и

   Свободные колебания невесомого тела суть простые гармонические колебания с частотой (периодом), равной частоте (периоду) колебаний математического маятника, длина которого равна статической деформации системы от груза Q. Так, например, если груз Q растягивает призматический стержень,

при изгибе балки на двух шарнирных опорах грузом Q посредине пролета

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее