48 (1092633), страница 2

Файл №1092633 48 (Электронные лекции) 2 страница48 (1092633) страница 22018-02-14СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

и т.д.

Если на упругую систему, кроме груза Q и силы упругого сопротивления системы Р, в том же направлении действует периодически меняющаяся возмущающая сила S и сила сопротивления среды R, то дифференциальное уравнение движения груза Q при колебаниях также может быть представлено в виде уравнения равновесия, подобного уравнению (1):

(2)

Силу сопротивления среды R на практике в довольно большом числе случаев можно считать пропорциональной первой степени скорости колебательного движения, т. е. . Если возмущающая сила S меняется по синусоидальному закону:

,

где , а — частота возмущающей силы, то уравнение (2) может быть переписано так:

или

(3)

Здесь — так называемый коэффициент затухания колебаний,

a — найденная выше частота свободных колебаний системы, возникающих при отсутствии как возмущающей силы S так и силы сопротивления R.

Решение уравнения (3) приводит к такому выражению для амплитуды А вынужденных колебаний при наличии сил сопротивления:

Здесь

— статическая деформация системы от наибольшей величины возмущающей силы S ( ). Отношение амплитуды вынужденных колебаний А к величине деформации называется коэффициентом нарастания колебаний :

Таким образом, формула (35.21) для динамического коэффициента получает теперь такой вид:

В этом выражении не учтена амплитуда собственных колебаний системы, которая может иметь сколько-нибудь существенное значение лишь в самом начале процесса колебаний; при наличии сил сопротивления она довольно быстро уменьшается с течением времени.

На рис.3 приведены графики изменения коэффициента нарастания колебаний в зависимости от величины отношения при разных значениях коэффициента затухания колебаний n ( отношения ). Если частота изменения возмущающей силы близка к частоте свободных колебаний системы, т. е. , и если величина коэффициента затухания колебаний сравнительно невелика, то знаменатели формул и для A и будут очень малыми, амплитуда колебаний и коэффициент нарастания колебаний будут очень большими. В этом случае даже небольшая возмущающая сила может вызвать высокие напряжения (явление резонанса).



Рис.3. Амплитудно-частотные характеристики системы.

С увеличением сил сопротивления явление резонанса становится все менее заметным. Заметим, однако, что силы сопротивления значительно уменьшают величину амплитуды вынужденных колебаний только вблизи от резонанса при других величинах отношения — влияние сил сопротивления незначительно.

Из рис. 3 видно, что если частота изменения возмущающей силы S очень мала, то амплитуда колебаний приближается к величине , коэффициент нарастания колебаний стремится к единице и наибольшие напряжения в системе могут быть вычислены как статические напряжения от груза Q и наибольшего значения возмущающей силы S.При очень большой частоте изменения возмущающей силы S амплитуда колебаний и коэффициент нарастания колебаний стремятся к нулю, груз Q можно рассматривать как неподвижный; поэтому наибольшее напряжение в системе равно статическому напряжению от груза Q.

Это обстоятельство имеет очень большое практическое значение; оно используется при конструировании разного рода поглотителей колебаний, сейсмографов, вибрографов и других приборов. В машиностроении амортизаторы, предохраняющие основания машин от усилий, возникающих при колебаниях, подбираются так, чтобы частота собственных колебаний машины на амортизаторах была значительно меньше частоты изменения возмущающей силы.

Учет массы упругой системы при колебаниях.

Если колеблющаяся система, несущая груз Q, обладает довольно значительной распределенной массой (число степеней свободы, следовательно, велико), то упрощенные расчеты, будут иметь уже значительную погрешность. В этом случае дифференциальные уравнения движения составляются с учетом массы системы. При решении подобного рода задач удобнее исходить не из условий равновесия, а из закона сохранения энергии.

Полагая, что количество энергии, сообщенное системе при выведении ее из положения равновесия и представляющее собой сумму кинетической и потенциальной энергии груза и упругой системы, при свободных колебаниях остается постоянным, получаем уравнение

(4)

Это уравнение показывает, что при колебаниях происходит непрерывный процесс преобразования энергии из одного вида в другой, не сопровождающийся какими-либо потерями энергии. Когда упругая система достигает одного из крайних положений, в котором скорость колебательного движения равна нулю, а следовательно, равна нулю и кинетическая энергия (T=0), потенциальная энергия груза и системы достигает наибольшего значения ; наоборот, в положении равновесия и .

Заметим, что принцип, положенный в основу этого уравнения, применим лишь для систем с одной степенью свободы, так как закон сохранения энергии не учитывает обмена энергии, происходящего в системах с несколькими степенями свободы. Таким образом, решение задачи о колебаниях системы с большим числом степеней свободы здесь сводится к простейшей задаче и мы сможем приближенно найти лишь одну (первую) частоту свободных колебаний.

Рассмотрим теперь некоторые примеры использования исходного уравнения.

В качестве первого примера исследуем колебания груза Q, подвешенного к нижнему концу призматического стержня длиной l, площадью поперечного сечения F и удельным весом (Рис. 4). Выведенный из положения равновесия и затем предоставленный самому себе груз начнет совершать продольные колебания около положения равновесия. Составим выражения для U и Т колеблющейся системы: груз — стержень.



Рис.4. Расчетная схема колебаний подвешенного груза

Потенциальная энергия системы по сравнению с положением равновесия изменится на , где — потенциальная энергия системы в начальный момент (в положении равновесия), a — в момент t.

Потенциальную энергию груза Q в начальный момент обозначим через ; потенциальная энергия стержня в тот же момент равна , где — статическая деформация стержня от груза Q.

Таким образом,

В момент t, когда груз переместится на расстояние х и стержень получит такую же дополнительную деформацию х, потенциальная энергия груза уменьшится на Qx, а сила упругого сопротивления стержня и статическая деформация его увеличатся в отношении . Поэтому

(5)

Кинетическая энергия системы складывается из кинетической энергии груза и стержня . Кинетическая энергия груза . При вычислении кинетической энергии стержня учтем, что в некоторый момент t скорость груза и нижнего конца стержня равна х', а верхнего — нулю. Скорости промежуточных сечений будут иметь значения, заключающиеся между этими двумя.

Предположим, что при колебаниях перемещения всех сечений стержня по отношению к закрепленному концу меняются по тому же закону, что и при статическом растяжении, т. е. пропорционально расстоянию от закрепленного сечения. Таким образом, если нижнее сечение стержня переместилось на величину х, то сечение, отстоящее от места защемления на , переместится на величину , скорость этого сечения будет равна . Живая сила элемента стержня длиной , отстоящего на от закрепленного конца, будет равна:

Кинетическая энергия всего стержня будет равна сумме величин , т.е.

Таким образом, живая сила стержня равна живой силе груза, имеющего массу , т. е. равную трети массы стержня, и двигающегося с той же скоростью х', что и груз Q. Полная же кинетическая энергия системы груз — стержень будет:

Подставляя Т и выражение U (4) в уравнение (5), дифференцируем последнее по t и находим:

или

Здесь — статическая деформация от груза . Полученное дифференциальное уравнение движения с учетом массы колеблющегося стержня отличается от полученного ранее уравнения только величиной множителя при х и полностью совпадает с ним, если пренебречь массой стержня. Поэтому поправка на массу стержня, которую нужно ввести в предыдущие расчеты, состоит в том, что при определении частоты свободных колебаний стержня статическая деформация его вычисляется не от груза Q, но от груза Q, сложенного с одной третью веса стержня. Таким образом, учет массы колеблющегося стержня уменьшает частоту свободных колебаний и увеличивает их период. Величину называют приведенной массой стержня.

Характеристики

Тип файла
Документ
Размер
159,5 Kb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее