Главная » Все файлы » Просмотр файлов из архивов » Документы » В.В. Филинов, А. В. Филинова - Электроника и основы измерений

В.В. Филинов, А. В. Филинова - Электроника и основы измерений, страница 15

2018-01-12СтудИзба

Описание файла

Документ из архива "В.В. Филинов, А. В. Филинова - Электроника и основы измерений", который расположен в категории "". Всё это находится в предмете "электрические машины" из 5 семестр, которые можно найти в файловом архиве РТУ МИРЭА. Не смотря на прямую связь этого архива с РТУ МИРЭА, его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "электрические машины и электроника" в общих файлах.

Онлайн просмотр документа "В.В. Филинов, А. В. Филинова - Электроника и основы измерений"

Текст 15 страницы из документа "В.В. Филинов, А. В. Филинова - Электроника и основы измерений"

3.4. Логические элементы. Серии цифровых интегральных схем

К цифровым интегральным микросхемам относятся устройства, с помощью которых преобразуются и обрабатываются сигналы, выраженные в двоичном или другом цифровом коде. Используемые при этом сигналы близки по форме к прямоугольным импульсами имеют два фиксированных уровня напряжения. Если уровню низкого напряжения приписывается символ “0”, а уровню высокого напряжения - “1”, то говорят о положительной логике. В противном случае логика отрицательная.

Основой цифровых микросхем является логический элемент, предназначенный для преобразования входных сигналов в выходные по определенному закону, причем те и другие принимают только значение “0” и “1”. Обозначим входные сигналы “X”, а выходные -“Y”, получим логическую функцию Y=F(X). Логическая функция записывается в виде математических символов или таблиц.

Основными логическими функциями являются: Y= – отрицание, инверсия или “НЕ” (табл.3.4.1); логическая сумма, дизъюнкция или функция “ИЛИ” (табл.3.4.2). Y = X1 + X2 = X1  X2; логическое произведение, конъюнкция или функция “И” (табл.3.3) Y = X1 * X2 = X1 ^ X2 Используя законы алгебры логики, на основе этих элементарных логических функций можно получить более сложные логические функции.

На рис.3.19. приведены обозначения логических элементов, выполняющие соответствующие логические функции НЕ, ИЛИ, И.

Логические элементы конструируются на основе ключевых схем, которые могут иметь различные конструкторско–технологическое исполнение. Совокупность цифровых микросхем, имеющих единое конструктивно-технологическое исполнение, выполняющих различные логические функции и предназначенные для совместного исполнения, называется серией интегральных схем.

Табл. 3.2

X1

X2

Y

0

0

0

0

1

1

1

0

1

1

1

1

Табл. 3.3

X1

X2

Y

0

0

0

0

1

0

1

0

0

1

1

1

Табл. 3.1

X

Y

0

1

1

0


ИЛИ И НЕ

а б в

Рис.3.19. Условные обозначения основных логических элементов

По типу принципиальной электрической схемы базового элемента в серии все логические элементы разделяются на элементы ДТЛ – типа (диодно – транзисторная логика), ТТЛ - типа (транзисторно – транзисторная логика), ЭСЛ – типа (эмиттерно – связанная логика), И2Л –типа (интегральная инжекционная логика), МОП и КМОПтипа (логика на полевых транзисторах).

К основным параметрам цифровых микросхем относятся быстродействие и потребляемая мощность. Быстродействие оценивают по времени задержки распространения сигнала tзд, т.е. по интервалу времени от подачи входного импульса до появления выходного; потребляемую мощность Pпот- по среднему значению мощности, потребляемой в состоянии “0” и “1”. Важным параметром также является коэффициент разветвления по выходу Кр, равный числу нагрузок, которые можно одновременно подключить к выходу. Он определяет нагрузочную способность логического элемента.

Примером базового элемента ДТЛ – логики является схема рис.3.20, выполняющая функцию логического элемента И. Логика положительная, при сигнале “0” на всех входах все диоды открыты, в них и в резисторе R появляются токи, создаваемые источником E1 и замыкающиеся через источники сигналов, подключенные ко всем входам. Поскольку сопротивление резистора R значительно больше прямого сопротивления диодов, напряжение на нем приблизительно равно E, а напряжение на входе оказывается близким к нулю.

Если напряжение на одном из входов соответствует логической “1” (Е >Е1), то соответствующий диод закрывается, однако остальные диоды открыты и на выходе по прежнему остается сигнал “0”. Сигнал “1” появится на выходе только тогда, когда на все входы будет воздействовать сигнал “1”, все диоды окажутся закрытыми, ток через резистор будет равен нулю и Uвых = E1.

Чтобы получить логический элемент И – НЕ, к элементу по схеме рис.3.20. добавляют инвертор на транзисторе (рис.3.21). Операция И осуществляется диодной частью схемы (Д1 – Д4, R1), а транзисторный каскад с общем эмиттером служит инвертором и преобразует величину напряжения логического уровня, принцип работы которого приведен на рис.3.10.

а б

Рис. 3.20. Схема логического элемента И - а и кодирование его сигналов - б

Рис. 3.21. Схема ДТЛ-элемента И-НЕ с простым инвертором

На основе схемы рис.3.21 построена, например, 156, 173 серии микросхем.

ДТЛ – логика обладает низким быстродействием и значительной потребляемой мощностью. Потому она большей степени используется в устройствах управления и автоматики.

Более высоким быстродействием по сравнению с ДТЛ логикой обладает ТТЛ – логика.

Рис. 3.22. Схема ТТЛ-элемента И-НЕ с простым инвертором

На рис.3.22 приведена схема самого распространенного элемента логики ТТЛ – базового элемента серии К155. Логический элемент этой серии имеет быстродействие tзд = 9 нс и Р =10 мВт.

Операция И реализуется здесь многоэмиттерным транзистором Т1, а транзистор Т2 служит в качестве инвертора. Многоэмиттерные транзисторы легко реализуются в интегральной технологии и служат основой ТТЛ-элементов. Если на всех входах (эмиттерах транзистора Т1) действует сигнал “1” (высокий потенциал), то все переходы эмиттер–база транзистора Т1 закрыты. Потенциал базы транзистора Т2 близок к нулю, а переход коллектор – база транзистора Т1 отрыт приложенным в прямом направлении напряжением источника +Е. Ток коллекторного перехода транзистора Т1 проходит через переход эмиттер – база транзистора Т2 переводя его в режим насыщения, а на выходе появляется сигнал “0” (низкий потенциал). Если на одном из входов появится сигнал “0”, то соответствующий переход эмиттер – база транзистора Т1 откроется и его базовый ток перебросится из коллекторной цепи в эмиттерную. В результате транзистор Т2 закроется и на выходе появится высокий потенциал (“1”). Таким образом, сигнал “0” может быть на выходе только при сигналах “1” на всех входах, что соответствует операции И – НЕ. Перспективной разновидностью логики ТТЛ являются микросхемы ТТЛШ, имеющие во внутренней структуре р-n переходы с барьером Шотки (р-n – переходы, внутри или рядом с которыми находится очень тонкий слой металла). Их применение на порядок улучшило соотношение быстродействия / потребляемая мощность. Хорошо известны серии логики ТТЛШ: К531 – высокоскоростная – tзд=3 нс, Pпот=19 мВт и К555 – высокоэкономичная – Pпот=2 мВт, tзд=9,5 нс , которое служит эффективной заменой для микросхем серии К155.

На рис.3.23 приведена схема такого элемента И – НЕ. Транзистор Т3 выполняет функции эмиттерного повторителя с нагрузкой в виде транзистора Т4 . При воздействии сигнала “1” на все входы транзистор Т2 насыщен, как показано ранее. Следовательно, транзистор Т4 также насыщен из-за высокого потенциала на его входе (точка а), создаваемого эмиттерным током транзистора Т2 на резисторе R3. Благодаря низкому потенциалу коллектора транзистора Т2 (точка б) транзистор Т3 закрыт. При воздействии сигнала “0” хотя бы на один из входов транзистор Т2 закрывается, а транзистор Т3 открывается из-за повышения потенциала точки б и работает как эмиттерный повторитель. Диод Д (Шотки) служит для обеспечения режима смещения транзистора Т3 , т.е. для того, чтобы этот транзистор был закрыт при насыщенном транзисторе Т2. Прямое напряжение на диоде Д составляет около 0,5 В и служит для запирания транзистора Т3. Это напряжение создается даже при очень малых (порядка микроампер) токах закрытого транзистора Т3 .

Рис. 3.23. Схема ТТЛ-элемента И-НЕ со сложным инвертором

ТТЛ и ТТЛШ элементы относятся к положительной логике с логическими уровнями : “1” ≈ 2,4 В и выше, “0” ≈ 0…0,4 В. Тактико – технические данные этих серий микросхем приведены в таблицах 3.4.4 и 3.4.5.

Принципиальная схема логического элемента типа ЭСЛ, серия К500 показана на рис.3.24. Особенность ЭСЛ в том, что схема логического элемента строится на основе интегральных дифференциальных усилителей, транзисторы Т1, Т2, Т3 которые могут переключать ток и при этом никогда не попадают в режим насыщения из-за наличия в коллекторных и эмиттерных цепях резисторов R16, ограничивающих этот ток, этим устраняется этап рассасывания избыточных зарядов, поэтому элементы типа ЭСЛ – самые быстродействующие: в настоящее время их быстродействие достигло субнаносекундного диапазона.

Важным достоинством элементов типа ЭСЛ является наличие инверсных выходов, позволяющих реализовать как логическую функцию, так и ее отрицание. Свое функциональное назначение согласно таблице 3.2 элемент рис.3.24 реализует следующим образом.

Рис. 3.24. Схема ЭСЛ-элемента ИЛИ/ИЛИ-НЕ

Если на один из входов или оба входа подать напряжение такого значения, что потенциал Uбэ транзисторов Т1 или Т2 станет больше порогового значения, то соответствующий или оба транзистора вместе откроются. Ток, протекающий через них, создаст падение напряжения на резисторе R6. напряжение Uбэ транзистора Т3 падает и напряжение на коллекторе Т3 повышается. Если напряжение на обоих входах низкое и не достигает порогового значения транзисторы Т1 и Т2 закрыты, а транзистор Т3 открыт высоким напряжением на его переходе Uбэ, электрический потенциал коллектора Т3 падает. Инверсный выход с коллекторов транзисторов Т1 и Т2 реализует функцию ИЛИ–НЕ.

ЭСЛ – относятся к положительной логике с логическими уровнями: “1” ≈ - 1,0 В, “0” ≈ - 1,65 В. Примерами микросхем на ЭСЛ – логике могут служить серии: К100, К500, К1500, технические параметры которых приведены в таблицах 3.4 и 3.5 .

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее