Главная » Все файлы » Просмотр файлов из архивов » Документы » Основы цифровой схемотехники

Основы цифровой схемотехники (Методички по электротехнике)

2018-01-12СтудИзба

Описание файла

Файл "Основы цифровой схемотехники" внутри архива находится в папке "Методические пособия". Документ из архива "Методички по электротехнике", который расположен в категории "". Всё это находится в предмете "электротехника (элтех)" из 4 семестр, которые можно найти в файловом архиве РТУ МИРЭА. Не смотря на прямую связь этого архива с РТУ МИРЭА, его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "электроника и электротехника" в общих файлах.

Онлайн просмотр документа "Основы цифровой схемотехники"

Текст из документа "Основы цифровой схемотехники"


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

МОСКОВСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ

ПРИБОРОСТРОЕНИЯ И ИНФОРМАТИКИ



В. В. Филинов, Н. С. Кузнецов

ОСНОВЫ ЦИФРОВОЙ СХЕМОТЕХНИКИ


Учебное пособие

Москва 2005

УДК 621.3(075.8) УТВЕРЖДЕНО

Ученым советом МГАПИ

В качестве учебного пособия

Представлено кафедрой

электротехника и электроника

(ИС-7) МГАПИ

Зав.кафедрой д.т.н.

проф. Шатерников В.Е.

Автор: д.т.н., профессор Филинов В. В.

д.т.н. Кузнецов Н.С.

«Основы цифровой схемотехники»

Представляет собой электронный вариант курса лекций, читаемой кафедрой ИС-7 МГАПИ, по дисциплинам "электротехника и электроника” и “электроника” по разделу “Основы цифровой схемотехники”.

Предназначен для студентов всех технических специальностей МГАПИ

Для дисциплин с ограниченной временной рабочей программой рекомендуется опустить пп.3,7,8,9 или рассматривать их в усеченном варианте.

Может быть использовано студентами для самостоятельной подготовки.

Рецензент – к.т.н. доцент Лавриненко М.М.

Компьютерная верстка – Аракелов П. Г.

. Скворцов Г. П.

Якубов Т. И.

© Московская Государственная Академия Приборостроения и Информатики,2005

© Филинов В.В.,2005

Москва, МГАПИ-2005

Оглавление

1. Общие сведения.

2. Электронные ключи и простейшие формирователи импульсных сигналов.

3. Импульсный режим работы операционных усилителей.

4. Логические элементы, серии цифровых интегральных микросхем.

5. Триггеры.

6. Счетчики импульсов.

7. Регистры, дешифраторы, мультиплексоры.

8. Цифро-аналоговые и аналого-цифровые преобразователи (ЦАП и АЦП).

9. Основные сведения о микропроцессорах.

10. Список литературы.

1.ОБЩИЕ СВЕДЕНИЯ.

В современной информационной электронике импульсный принцип построения систем занимает доминирующее положение по сравнению с аналоговым принципом. На базе импульсной технике выполняются системы управления и регулирования, устройства измерения и отображения информации. На ней основана цифровая вычислительная техника.

В отличие от аналоговых систем, в которых сигналы изменяются непрерывно во времени (например, напряжение изменяется пропорционально регулируемой температуре), в импульсных системах используются сигналы (напряжение, ток) импульсной формы.

1. В импульсном режиме может быть достигнута значительная мощность во время действия импульсов при малом значении средней (за период их повторения) мощности устройства. Очевидно, это преимущество проявляется сильнее при уменьшении длительности импульсов по отношению к периоду их повторения. В результате габариты и масса электронной аппаратуры, определяемые в основном средней мощностью, при использовании импульсного режима могут быть существенно снижены.

2. Импульсный режим позволяет ослабить влияние температуры и разброса параметров полупроводниковых приборов на работу устройств. Это объясняется уменьшением энергии, выделяемой в элементах импульсного устройства. Разброс параметров не отражается существенно на работе импульсных устройств в связи с тем, что полупроводниковые приборы в них работают, как правило, в ключевом режиме, предполагающем два крайних состояния: “Включено “ – “Выключено”.

3. Импульсный режим позволяет значительно повысить пропускную способность и помехоустойчивость электронной аппаратуры. Пропускная способность – возможная наибольшая скорость передачи информации, а помехоустойчивость – способность аппаратуры правильно функционировать в условиях действия помех. Сигналы импульсных устройств дискретны и представляются комбинацией стандартных импульсов, поэтому скорость передачи таких сигналов выше, чем непрерывных. Выше и помехоустойчивость, так как искажение параметров импульсов (например, амплитуды) помехами не искажает информацию, заключенную в определенном сочетании импульсов.

4. Для реализации импульсных устройств, даже сложных (например, вычислительных машин), требуется большое число сравнительно простых однотипных элементов, легко выполняемых методами интегральной технологии. Это позволяет повысить надежность, уменьшить габариты и массу электронной аппаратуры.

Импульсные устройства широко распространены в вычислительной технике, радиолокации, телевидении, автоматике, промышленной электронике. Переход к дискретному представлению сигналов в виде сочетания импульсов в измерительной технике позволил резко повысить точность измерительных приборов. Импульсный режим работы лежит в основе современных быстродействующих цифровых вычислительных машин. Мощные импульсы передатчиков излучаются антеннами радиолокаторов, а слабые, отраженные от различных объектов импульсы, принимаются и обрабатываются приемниками, причем импульсный режим позволяет выделять сигналы, амплитуда которых значительно меньше уровня помех.

В импульсной технике применяют, как правило, видеоимпульсы, примеры которых приведены на рис.1.

О бычно импульсы следуют периодически с периодом Т, которому соответствует частота повторения F=1/Т (Рис.2.). Отношение периода Т к длительности tи импульсов называют скважностью: q = Т/tи. Скважность обычно колеблется в пределах от 2 – 10 (автоматика, вычислительная техника) до 10000 (радиолокация). Приведенные на рис. 2. импульсы идеализированы.

Реальные импульсы рис. 3. искажены, что выражается обычно в замедлении нарастания и убывания импульса, а также в спаде его плоской вершины. Это связано с наличием переходных процессов в n-р переходах, реализующих импульсный режим работы элементов. Реальные импульсы характеризуют следующими основными параметрами (рис.3):

амплитудой импульса А;

длительностью импульса tи обычно определяемой на уровне 0,1 А;

длительностью фронта импульса tф – временем нарастания импульса от 0,1 до 0,9 А;

длительностью среза импульса tс– временем убывания импульса от 0,9 до 0,1 А;

спадом вершины импульса ∆ А.

Для определения полосы пропускания устройств, предназначенных для передачи импульсных сигналов, важно знать спектральный состав этих сигналов. Периодическую последовательность импульсов характеризуют спектром в виде суммы бесконечно большого числа гармоник. Амплитудные спектры – зависимости амплитуд гармоник от частоты – различны для разных форм импульсов, их длительности и периода. На рис.4. показан амплитудный спектр периодических прямоугольных импульсов (см. рис.2.).Отдельные составляющие спектра отстоят одна от другой по оси частот на величину частоты повторения F=1/Т. Поэтому спектр содержит постоянную составляющую А (0) и амплитуды гармоник с частотами, кратными F. Другие составляющие спектра отсутствуют. Такой спектр называют линейчатым (дискретным). В спектре рис.4. отсутствуют также составляющие с частотами, кратными 1/tи. Спектры характеризуют активной шириной, представляющей собой диапазон частот от ƒ=0 до ƒmax=Fa, в котором заключено 95% энергии сигнала. Для прямоугольного импульса Fа=2/tн. Чтобы импульс почти не искажался при передаче через электрическую цепь (например, через усилитель), нужно обеспечить ширину полосы пропускания цепи не менее Fа. Таким образом, для неискаженной передачи прямоугольного импульса требуется полоса 2/tи. Например, для прямоугольного импульса длительностью tи = 1мкс необходима полоса пропускания ∆ ƒ = 2/tи = 2/10-5 = 2 МГц. Заметим, что ширина полосы пропускания, обеспечивающая неискаженную передачу, не зависит от частоты повторения импульсов при постоянной их длительности.

2. ЭЛЕКТРОННЫЕ КЛЮЧИ И ПРОСТЕЙШИЕ ФОРМИРОВАТЕЛИ ИМПУЛЬСОВ.

В состав многих импульсных устройств входят электронные ключи. Основу любого электронного ключа составляет активный элемент (полупроводниковый диод, транзистор, операционный усилитель), работающий в ключевом режиме. Ключевой режим характеризуется двумя состояниями ключа: “Включено” – “Выключено”. На рис.5., а – в приведены упрощенная схема и временные диаграммы идеального ключа. При разомкнутом ключе i=0, uвых=E, при замкнутом ключе i=E/R, uвых=0. При этом предполагается, что сопротивление разомкнутого ключа бесконечно велико, а сопротивление замкнутого ключа равно нулю. В реальных ключах токи, а также уровни выходного напряжения, соответствующие состояниям “Включено” – “Выключено”, зависит от типа и параметров применяемых активных элементов и переход из одного состояния в другое происходит не мгновенно, а в течение времени, обусловленного инерционностью активного элемента и наличием паразитных емкостей и индуктивности цепи. Качество электронного ключа определяется следующими основными параметрами:

падением напряжения на ключе в замкнутом состоянии u3;

током через ключ в разомкнутом состоянии iр;

в

ременем перехода ключа из одного состояния в другое (временем переключения) tпер.

Чем меньше значения величин U, iр и tпер, тем выше качество ключа. Простейший тип электронных ключей – диодные ключи. В качестве активных элементов в них используют полупроводниковые или электровакуумные диоды. На рис.6,а - приведена схема последовательного диодного клю-

ч а, а на рис.6,б – его передаточная характеристика. При положительном входном напряжении диод открыт и ток через него

Rпр – прямое сопротивление диода.

Выходное напряжение

,

О бычно Rпр << R, тогда Uвых ≈ Uвх. При входном отрицательном напряжение обратный ток через диод

где Rобр – обратное сопротивление диода.

При этом выходное напряжение


К

ак правило, Rобр>>R и Uвых≈R(Uвх/Rобр)<<Uвх. При изменении полярности включения диода график функции Uвых=f(Uвх) повернется на угол π вокруг начала координат. Схеме рис.6,а соответствует нулевой уровень включения (уровень входного напряжения, определяющий отпирание или запирание диода). Для изменения уровня включения в цепь ключа вводят источник напряжения смещения E0 (рис.7,а). В этом случае при Uвх>E0 диод открыт и Uвых≈Uвх, а при Uвх< E0 – закрыт и Uвых=E0 (рис.7,б). Если изменить полярность источника E0, то график функции Uвых (Uвх ) приобретет вид, показанный на рис.7,б – пунктирной линией.

Используя выше приведенный принцип анализа работы диодных ключей можно построить различные ключевые схемы. Для примера на рис.8 и 9 приведены схемы и передаточные характеристики параллельного и двойного диодных ключей. Диодные ключи не позволяют электрически разделить управляющую и управляемую цепи, что часто требуется на практике. В этих случаях используют транзисторные ключи. На рис.10,а приведена схема ключа на биполярном тран­зисторе. Входная (управляющая) цепь отделена от выходной (управляемой) цепи. Ключ мало отличается от усилителя, выполненного по схеме с общим эмиттером. Однако транзистор работает в ключевом режиме, характеризуемом двумя состояниями. Первое состояние определяется точкой А1 на выходных характеристиках транзистора; его называют режимом отсечки. В режиме отсечки ток базы I6=0, коллекторный ток Iк1 равен начальному коллекторному току, а коллекторное напряжение Uн=Uн1≈Eк (рис.10,б). Режим отсечки реализуется при отрицательных потенциалах базы. Второе состояние определяется точкой А2 и называется режимом насыщения. Он реализуется при положительных потенциалах базы. При этом ток базы определяется в основном сопротивлением резистора R6 и Iб2=Uвх / R6, поскольку сопротивление открытого эмиттерного перехода мало. Коллекторный переход также открыт, и ток коллектора Iк2≈Eк/Rк, а коллекторное напряжение Uк2≈0. Из режима отсечки в режим насыщения транзистор переводится воздействием положительного входного напряжения. При этом повышению входного напряжения (потенциала базы) соответствует понижение входного напряжения (потенциала коллектора), и наоборот. Такой ключ называют инвертирующим (инвертором). В рассмотренном транзисторном ключе уровни выходного напряжения, соответствующие режимам отсечки и насыщения, стабильны и почти не зависят от температуры.

Существуют также повторяющие ключи, у которых понижению входного напряжения соответствует понижение выходного напряжения. Повторяющий ключ выполняют по схеме эмиттерного повторителя.

В ремя переключения ключей на биполярных транзисторах, также как диодных ключей, определяется постоянной времени переходного процесса при включении и выключении р-n-переходов и зависит от их емкости и величины сопротивлениях, определяемых технологиями производства элементов ключей. Для повышения быстродействия и входного сопротивления применяют ключи на полевых транзисторах.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее