85340 (О скрытых возможностях физического содержания уравнений Максвелла классической электродинамики)

2016-08-02СтудИзба

Описание файла

Документ из архива "О скрытых возможностях физического содержания уравнений Максвелла классической электродинамики", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85340"

Текст из документа "85340"

О скрытых возможностях физического содержания уравнений Максвелла классической электродинамики

В.В. Сидоренков, МГТУ им. Н.Э. Баумана

Показана возможность концептуальной модернизации традиционных представлений классической электродинамики о структуре и свойствах электромагнитного поля, позволяющей выявить принципиально новые реалии в физическом содержании уравнений Максвелла, иллюстрирующие подлинное величие и грандиозные скрытые возможности этих уравнений в отношении полноты охвата наблюдаемых в Природе явлений электромагнетизма.

Общепринято считать, что все известные явления электромагнетизма обусловлены существованием и взаимодействием с материальными средами электромагнитного поля, с двумя векторными компонентами электрической и магнитной напряженностей. Свойства этого поля физически полно и математически исчерпывающе описываются системой взаимосвязанных электродинамических уравнений, первоначальная форма и структура которых была сформулирована Максвеллом [1]. К сожалению, Максвелл ушел из жизни рано (в 48 лет), и свои гениальные уравнения он так и не успел привести в единую логическую систему. Поэтому при жизни его теория электромагнитного поля не нашла должного признания в научной среде, более того, у некоторых коллег отношение к ней было почти враждебным, вплоть до полного неприятия: она считалась непонятной, математически нестрогой и логически необоснованной. Как отголоски прошлого и сегодня можно услышать разговоры о некоем «механическом» методе построения Максвеллом своих уравнений, хотя этого в трактате [1] нет. Можно без преувеличения сказать, что для физика, инженера и преподавателя трактат Максвелла (конечно, если они его действительно читали) является бесценным методическим и информационным пособием, библией электромагнетизма, а для студента еще и физическими основами математического анализа.

Впоследствии, после триумфа теории Максвелла - открытия электромагнитных волн (Герц, 1888г), эти уравнения были модернизированы Герцем и Хевисайдом, где новации заключались по существу лишь в уменьшения числа (с 8 до 4) основных исходных уравнений системы. Однако если говорить о положительном эффекте такой модификации, то он заключался в том, что предложенные уравнения были для того времени концептуально логически обозримы и физически более последовательны, имели удобный математически векторный вид и в определенной мере законченную форму. В современном окончательном виде именно эту модифицированную систему уравнений [2]:

(a) , (b) ,

(c) , (d) , (1)

и стали называть уравнениями Максвелла классической электродинамики. Здесь векторы напряженности электрического и магнитного полей связаны посредством материальных соотношений:

, , , (2)

с векторами электрической и магнитной индукций, вектором плотности электрического тока , которые представляют собой отклик среды на наличие в ней электромагнитного поля. Соответственно, – объемная плотность стороннего заряда, и – электрическая и магнитная постоянные, – удельная электрическая проводимость, относительные диэлектрическая и магнитная проницаемости среды.

Принципиальная особенность этих релятивистски-инвариантных уравнений (1) состоит в том, что в их структуре заложена отражающая обобщение опытных данных основная аксиома классической электродинамики – неразрывное единство переменных во времени электрической и магнитной компонент электромагнитного поля. Прямым фундаментальным следствием уравнений Максвелла является вывод о том, что описываемое ими электромагнитное поле распространяется в свободном пространстве посредством поперечных волн, скорость которых определяется лишь электрическими и магнитными параметрами среды, заполняющей это пространство (например, в отсутствие поглощения ). Совместное решение уравнений системы (1) позволяет также ответить на вопрос, что переносят эти волны и получить аналитическую формулировку закона сохранения электромагнитной энергии:

, (3)

согласно которому поток электромагнитной энергии компенсирует в данной точке среды джоулевы (тепловые) потери за счет электропроводности (первое слагаемое справа) и изменяет электрическую и магнитную энергии, либо наоборот. При этом характеризующий энергетику данного факта вектор Пойнтинга плотности потока электромагнитной энергии , связанный с вектором объемной плотности электромагнитного импульса , отличен от нуля только там, где одновременно присутствуют электрическая и магнитная компоненты поля, векторы и которых неколлинеарны.

Суть электромагнетизма – это взаимодействие электромагнитного поля с материальной средой, а потому в итоге все сводится к стремлению описать энергетику явлений электрической и магнитной поляризаций, феномена электропроводности. Однако следует указать на весьма ограниченный диапазон явных возможностей уравнений Максвелла (1), поскольку строго в их рамках нельзя представить в принципе раздельное существование чисто электрических либо магнитных волн, переносящих электродинамические потоки только электрической или магнитной энергии, хотя процессы соответствующей поляризации наблюдаются в эксперименте, существуют раздельно и энергетически друг от друга независимы. Кроме того, далеко не ясен вопрос о физической реализации момента импульса электромагнитного поля, соответственно, переносящих его волн, и как это явление соотносится с уравнениями Максвелла. Заметим, что еще со времен Пойнтинга его безуспешно пытаются описать этими уравнениями (см., например, результаты анализа в статье [3]).

В ограниченности уравнений (1) можно убедиться на конкретном примере изучения энергетики процесса стационарной электропроводности в металле, где наряду с тепловыделением в проводнике существуют электрическое и магнитное поля, а, следовательно, и соответствующие энергии. Однако, согласно (3), уравнения (1) способны описать лишь энергетику тепловых потерь, причем сам по себе закон Джоуля-Ленца на локальном уровне существовать не может, ибо для его реализации требуется поступление в данную точку потока электромагнитной энергии извне: . Итак, процесс электрической проводимости принципиально имеет полевое континуальное воплощение. При этом уравнения Максвелла (1) в принципе не способны описать аналогичные потоку электромагнитной энергии другие существующие в данном процессе потоки: электрической или магнитной энергий. Теоретический анализ такой ситуации представлен в работах [4, 5].

В этой связи попытаемся аргументированно прояснить сложившуюся ситуацию, для чего продолжим далее модернизацию теперь уже уравнений (1), где нашей основной задачей будет выявление концептуально новых реалий в физическом содержании уравнений Максвелла, иллюстрирующих действительное величие и грандиозные скрытые возможности этих уравнений в отношении полноты охвата наблюдаемых в Природе явлений электромагнетизма.

Поскольку «все новое – это хорошо забытое старое», то обратимся к физическим представлениям о векторном потенциале электромагнитного поля, который, по словам Максвелла [1], “может быть признан фундаментальной величиной в теории электромагнетизма”. Однако в наше время векторные потенциалы как физическую реальность по существу не рассматривают, им отводят лишь роль вспомогательной математической функции, в ряде случаев упрощающей вычисления. Такой общепринятый сегодня взгляд на векторные потенциалы берет начало от Герца и Хевисайда, о чем прямо говорится в цитате из статьи Герца (перевод из [6]): “… мне не кажется, что какая либо выгода достигается при введении векторного потенциала в фундаментальные уравнения; более того, хотелось бы видеть в этих уравнениях связь между физическими величинами, которые можно наблюдать, а не между величинами, которые служат лишь для вычислений ”. Не доводя до абсурдной абсолютизации мнение классика, в целом с этим приходится согласиться, так как такой взгляд обусловлен взаимно неоднозначной связью полей и их потенциалов, не допускающей прямых измерений последних, но, что еще более важно, использование векторных потенциалов строго в рамках уравнений Максвелла не приводит в явном виде к дополнительным, не известным прежде следствиям.

Удивительно, но это табу на развитие физических представлений в классической электродинамике существует со времен Герца, и его продолжают настоятельно культивировать уже более века. Другое подобное табу - это завидное упорство в применении инородной электродинамике гауссовой системы единиц, где по существу игнорируется физическое содержание электродинамических соотношений и выдвигается на передний план формализм математики, что создает путаницу физических понятий и мешает действительно разобраться в них. Конкретный пример такого «математического шабаша» в электромагнетизме можно встретить даже в учебниках, когда без разбора пишут, кстати, не считаясь с мнением Максвелла ([1] п. 12, 14), как « », так и « » либо « » и « ». Кроме того, вызывает недоумение неприятие до сей поры и необъяснимый корпоративный снобизм многих профессиональных физиков в отношении к широко используемой в технических дисциплинах международной системы единиц СИ. По нашему мнению, налицо концептуальный застой и даже стагнация в теории электромагнетизма. При этом, несмотря на все вышесказанное, опять же в учебной литературе повсеместно с помпой утверждается, что именно данная область физического знания наиболее полно разработана во всех ее аспектах и ее современный уровень является вершиной человеческого гения.

Однако к настоящему времени исследованиями в области электродинамики, квантовой механики и сверхпроводимости достоверно установлено, что в фундаментальных уравнениях должны фигурировать не электромагнитные поля, а именно их потенциалы. В частности, эффекты Ааронова-Бома, Джозефсона, Мейснера реализуются в поле магнитной компоненты векторного потенциала [6], проявляющего себя тем самым вполне наблюдаемой физической величиной. Известно предложение о применении указанного поля векторного потенциала в технологиях обработки разного рода материалов [7]. Отметим также сообщение [4], где на основе формального использования представлений об электромагнитном векторном потенциале металлического проводника с током установлено, что в проводник при электропроводности вместе с потоком электромагнитной энергии (вектора Пойнтинга) поступают потоки чисто электрической и чисто магнитной энергии, момента электромагнитного импульса. Таким образом, имеем серьезную, требующую своего разрешения проблему, в которой надо должным образом проанализировать известные либо вскрыть новые реалии в физическом содержании уравнений Максвелла, в частности, понять роль и место векторного потенциала в теории электричества

Поставленная задача и проведенный в этом направлении анализ [8-10] показал, что исходные соотношения первичной взаимосвязи электромагнитного поля с компонентами электрической и магнитной напряженностей и поля электромагнитного векторного потенциала с электрической и магнитной компонентами можно получить непосредственно из системы максвелловских уравнений (1):

(a) , (b) ,

(c) , (d) . (4)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее