85340 (763987), страница 2

Файл №763987 85340 (О скрытых возможностях физического содержания уравнений Максвелла классической электродинамики) 2 страница85340 (763987) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Здесь соотношение (4a) для магнитной компоненты векторного потенциала вводится с помощью уравнения (1d), так как дивергенция ротора произвольного векторного поля тождественно равна нулю. Аналогично соотношение (4b) для электрической компоненты векторного потенциала следует из уравнения (1b) при , справедливого для сред с локальной электронейтральностью. Однозначность функций векторного потенциала, то есть чисто вихревой характер таких полей, обеспечивается условием кулоновской калибровки: div . Далее подстановка соотношения (4a) для в уравнение вихря электрической напряженности (1a) приводит к известной формуле (4с) связи полей векторов и [2], описывающей закон электромагнитной индукции Фарадея. В силу рассмотрения только вихревых полей, формально следующий из таких рассуждений электрический скалярный потенциал тут не обсуждается. Аналогичная подстановка соотношения (4b) для в уравнение вихря магнитной напряженности (1c) с учетом соотношений (2) дает формулу (4d) связи полей векторов и , где – постоянная времени релаксации электрического заряда в среде за счет ее электропроводности.

Как видим, полученные соотношения (4) являются базой для интерпретации физического смысла поля электромагнитного векторного потенциала, выяснения его роли и места в теории электричества (см. работу [8]), соответственно, в явлениях электромагнетизма. Однако самое главное и конструктивное в них то, что они представляют собой логически связанную систему уравнений, описывающих структуру и свойства необычного вихревого векторного поля, состоящего их четырех полевых векторных компонент , , и , которое условно назовем единое электродинамическое поле.

Объективность существования указанного единого поля убедительно иллюстрируется основным фундаментальным следствием из соотношений (4), которое состоит в том, что подстановки (4c) в (4b) и (4d) в (4a) приводят к системе новых электродинамических уравнений для поля электромагнитного векторного потенциала с полевыми компонентами: электрической и магнитной . Видно, что математическая структура этих уравнений, полностью аналогична системе традиционных уравнений электродинамики Максвелла (1):

(a) rot , (b) div ,

(c) rot , (d) div . (5)

Чисто вихревой характер компонент и поля векторного потенциала обеспечивается условием калибровки посредством дивергентных уравнений (5b) и (5d), которые также представляют собой для уравнений (5a) и (5c) начальные условия в математической задаче Коши, что делает систему (5) замкнутой. Неординарность уравнений системы (5) вполне очевидна, поскольку в каждом одном роторном уравнении для компоненты потенциала или содержится информация о свойствах обоих роторных уравнений электромагнитных полей и системы (1). Убедиться в этом посредством дифференцирования по времени и пространству этих уравнений с учетом соотношений (4) предоставим читателю. При этом дивергентные уравнения системы (5) с помощью дифференцирования их по времени преобразуются в соответствующие уравнения системы (1) при .

Однако вернемся к соотношениям (4) единого электродинамического поля. Подстановки соотношения (4с) в продифференцированное по времени соотношение (4a) и аналогично (4d) в (4b) дают систему электродинамических уравнений электромагнитного поля (1) при , где уравнения (1d) и (1b) получаются взятием дивергенции от (4a) и (4b). Уравнения (1а) и (1с) можно также получить, если взять ротор от (4с) и (4d) при подстановке в них (4а) и (4b).

Применение операции ротора к (4c) и подстановка в него (4a) с учетом (4d) преобразует систему (4) в еще одну систему теперь уже уравнений электрического поля с компонентами напряженности и векторного потенциала :

(a) rot , (b) div ,

(c) rot , (d) div . (6)

Соответственно взятие ротора от соотношения (4d) и подстановка в него (4b) с учетом (4c) снова преобразует систему соотношений (4) в еще одну новую систему уравнений классической электродинамики систему уравнений магнитного поля с компонентами напряженности и векторного потенциала :

(a) rot , (b) div ,

(c) rot , (d) div . (7)

Сделаем общее математическое замечание о дивергентных уравнениях во всех системах. Как уже говорилось, уравнения являются калибровкой, обеспечивающей однозначность функции векторного потенциала , поэтому, согласно симметрии уравнений в рассматриваемых системах, другие дивергентные уравнения: (1b) при , (1d), (6b) и (7b) с математической точки зрения также следует считать соответствующими калибровками для функций вихревых полей и .

Проведем анализ полученных выше систем уравнений [9], специфика которых состоит в том, что, являясь модификацией уравнений Максвелла электромагнитного поля, они справедливы теперь в таких областях пространства, где присутствуют одновременно поля и их векторные потенциалы, либо только потенциалы. Согласно структуре представленных уравнений, описываемые ими поля распространяются в пространстве в виде волн, скорость которых определяется электрическими и магнитными параметрами среды, заполняющей это пространство: , и . В этом можно убедиться, взяв, как обычно, ротор от одного из роторных уравнений системы, и после чего подставить в него другое роторное уравнение той же системы. В качестве иллюстрации получим, например, для системы (6) волновое уравнение относительно :

rot rot grad div rot ,

где, согласно (6b), div , а Δ – оператор Лапласа. Таким образом, имеем теперь волновые уравнения не только для электромагнитных полей и , но и для их векторных потенциалов и в парных комбинациях этих четырех уравнений в зависимости от системы. В итоге возникает физически очевидный, принципиальный вопрос: какие это волны, и что они переносят? Результаты изучения особенностей распространения составляющих единого электродинамического поля в виде плоских волн в однородных изотропных материальных средах изложены, например, в публикации [10]. Однако в настоящей работе для нас больший интерес представляет другое: прояснить физическое содержание рассматриваемых здесь новых систем электродинамических уравнений.

Подобно вектору Пойнтинга плотности потока электромагнитной энергии полей системы уравнений (1) рассмотрим другой потоковый вектор , который, судя по размерности, описывает электрическую энергию, приходящуюся на единицу площади поверхности. Для аргументированного обоснования возможности существования такого вектора и установления его статуса воспользуемся уравнениями системы (6) и с помощью стандартных вычислений (см. (3)) получим

(8)

- соотношение, описывающее энергетику реализации процесса электрической поляризации среды в данной точке. Как видим, уравнения электрического поля системы (6) описывают чисто электрические явления, в том числе, поперечные электрические волны, переносящие поток электрической энергии.

Аналогичным образом можно ввести еще один потоковый вектор , размерность которого соответствует поверхностной плотности магнитной энергии в соотношении, описывающем энергетику процесса намагничивания среды в данной точке:

. (9)

Итак, уравнения магнитного поля системы (7) рассматривают чисто магнитные явления, устанавливают реальность поперечных магнитных волн, переносящих поток магнитной энергии.

Эксперименты по изучению условий возбуждения и распространения магнитных волн в металлах и сопоставление их с теорией распространения единого электродинамического поля в виде плоских волн представлены в работе [10]. Все это действительно убеждает нас, что известная технология нагрева металлов с помощью магнитного индуктора – это использование физического процесса возбуждения и распространения в проводящей среде чисто магнитных поперечных волн. Резюме: если Вы сделали открытие, то загляните в книгу, там об этом уже все написано.

Полученные соотношения баланса (8) и (9) описывают энергетику условий реализации обычной электрической или магнитной поляризации среды (первое слагаемое правой части соотношений) посредством переноса извне в данную точку потоком вектора или соответствующей энергии. Однако эти соотношения устанавливают также наличие эффектов динамической поляризации вещества (в частности, проводящих сред) за счет действия переменных во времени электрической или магнитной компонент поля электромагнитного векторного потенциала. Надо сказать, что явления динамической поляризации уже имеют прямое экспериментальное воплощение: это эффекты электродинамической индукции в металлах [11] и динамического намагничивания в ферритах и магнитоупорядоченных металлах [12].

Очевидно, что такие представленные результаты анализа систем (6) и (7) в виде соотношений энергетического баланса (8) и (9) в принципе невозможны и просто абсурдны в рамках традиционных уравнений электродинамики Максвелла, но это нисколько не является недостатком системы (1), а лишь иллюстрирует автономию при описании полей в одной системе уравнений по отношению к другим.

Аналогично вводится потоковый вектор , определяющий, судя по размерности, момент импульса на единицу площади поверхности. Соответственно, уравнения (5) позволяют получить соотношение баланса процесса передачи момента электромагнитного импульса:

. (10)

Здесь момент электромагнитного импульса в проводящей среде создается электрической компонентой векторного потенциала, стационарной в том числе, а в среде диэлектрика – переменными во времени электрической и магнитной компонентами.

Как видим, именно уравнения поля электромагнитного векторного потенциала (5) описывают волны, переносящие в пространстве поток момента импульса, которые со времен Пойнтинга безуспешно пытаются описать с помощью уравнений электромагнитного поля (1) (см. анализ в [3]). Существенно, что сами по себе волны векторного потенциала принципиально не способны переносить энергию, поскольку в уравнениях системы (5) поля и отсутствуют. В этой связи укажем на пионерские работы [13], где обсуждается неэнергетическое (информационное) взаимодействие векторного потенциала со средой при передаче в ней потенциальных волн и их детектирование с помощью эффекта, аналогичного эффекту Ааронова-Бома. Однако, как иллюстрирует система соотношений (4) и установлено анализом в работе [10], существование и распространение волн электромагнитного векторного потенциала в принципе невозможно без сопровождающих их волн электромагнитного поля, соответственно, наоборот.

Характеристики

Тип файла
Документ
Размер
1,59 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов статьи

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее