77129-1 (Адсорбция и поверхностное осаждение кадмия на гематите)

2016-08-02СтудИзба

Описание файла

Документ из архива "Адсорбция и поверхностное осаждение кадмия на гематите", который расположен в категории "". Всё это находится в предмете "экология" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "экология" в общих файлах.

Онлайн просмотр документа "77129-1"

Текст из документа "77129-1"

Адсорбция и поверхностное осаждение кадмия на гематите

С.А.Пивоваров, Л.З.Лакштанов

Институт экспериментальной минералогии РАН

С помощью потенциометрического титрования и измерения концентрации кадмия в растворе изучена сорбция кадмия на поверхности раздела гематит - раствор электролита в широком интервале рН и концентрации Cd2+. Обработка экспериментальных данных проводилась с помощью модели, представляющей собой синтез моделей поверхностного комплексообразования (с двойным слоем постоянной емкости) и поверхностного осаждения. Полученная модель удовлетворительно описывает сорбционное поведение кадмия во всем интервале концентраций, включая переходную область между адсорбцией и объемным осаждением гидроксида Cd. В этой области Cd не только адсорбируется поверхностными центрами, но и образует твердый раствор путем структурного внедрения в решетку гематита. Наилучшим образом экспериментальные данные описываются моделью с двумя типами поверхностных комплексов --OHCdOH2+ и --OHCdOH, для которых получены соответствующие термодинамические константы.

Введение

Адсорбция на поверхности раздела минерал - раствор в значительной степени определяет многообразные процессы, протекающие в гетерофазных системах. Поэтому интерес к изучению адсорбции, резко возросший в последнее десятилетие, охватывает такие области как геохимия, гидрогеология, океанология, химия и технология воды, экология и др.

При наличии больших поверхностей раздела адсорбционные равновесия могут существенным образом изменять состав объемных фаз, поэтому их учет становится необходимым. Такая ситуация имеет место, например, при миграции тяжелых металлов в грунтовых водах.

При техногенном загрязнении окружающей среды процессы адсорбции приводят к локализации очагов загрязнения. Таким образом, природа до некоторой степени сама справляется с загрязнением, естественным образом уменьшая техногенную нагрузку. Этот эффект используется также в достаточно простом виде: создаются, например, искусственные адсорбционные барьеры на пути миграции тяжелых металлов. В качестве материала для таких искусственных адсорбционных барьеров часто используют гидроксиды трехвалентного железа, являющиеся весьма дешевыми и эффективными адсорбентами тяжелых металлов.

Для того, чтобы изучение адсорбции имело количественный характер, в экспериментальной работе следует иметь дело с фазой, имеющей хорошо охарактеризованную, стабильную поверхность. В качестве такой фазы в работе использовался кристаллический гематит, структура поверхности которого, как показано в [1], близка к структуре поверхности гидроксидов железа, образующихся в корах выветривания основных и ультраосновных пород (?ферригидрит¦).

Среди тяжелых металлов наибольшей токсичностью обладает кадмий; поэтому он вызывает серьезные экологические проблемы при техногенном загрязнении грунтовых вод [2].

Адсорбция кадмия на оксидах и гидрооксидах железа исследовалась во многих работах [3-11]. Несмотря на самые различные подходы к интерпретации экспериментальных данных, можно выделить следующие особенности:

Адсорбция кадмия увеличивается с ростом рН. В большинстве работ была исследована именно эта зависимость. Однако, на фоне сильных отклонений от идеальности довольно трудно сделать правильные выводы о стехиометрии поверхностных комплексов.

По данным разных авторов [3, 4] отношение Cd2+/H+, измеряемое в ходе эксперимента по поглощению кадмия и щелочи, лежит в пределах 1.5-2. Поэтому обычно предполагается, что кадмий сорбируется в виде гидроксокомплексов CdOH+ и Cd(OH)2 (запись соответствующих адсорбционных комплексов зависит от модели поверхности и некоторых других модельных представлений). Однако, как показывает сам по себе разброс значений, стехиометрия поверхностных комплексов не ясна.

Кадмий адсорбируется специфически, т.е. в основном за счет сил неэлектростатического характера. На это указывает тот факт, что адсорбция легко протекает в области рН от 4 до 8, где поверхность гематита имеет положительных заряд.

Величина максимальной адсорбции ионов в мономолекулярном слое не зависит от размера ионов (за исключением некоторых ионов органических соединений) и определяется концентрацией адсорбционных центров на поверхности адсорбента. Обычно в качестве таких центров рассматриваются поверхностные ОН-группы. Однако для тяжелых металлов и, в частности, для кадмия величину максимальной адсорбции в монослое измерить обычно не удается. Связано это с тем, что эти металлы способны образовывать твердые гидроксиды, причем в присутствии адсорбента растворимость таких гидроксидов снижается по не вполне ясным причинам.

В большинстве упомянутых работ, за исключением [3], удовлетворительно описана только какая-либо одна из особенностей адсорбционного поведения кадмия; чаще всего это зависимость адсорбции от pH. Однако основой любой адсорбционной модели должно быть описание кислотно-основных свойств поверхности сорбента, поскольку для (гидр)оксидов металлов основными потенциал-определяющими ионами являются протон и гидроксил-ион, и предпосылкой для независимого определения параметров модели должна являться единая совокупность экспериментальных данных по адсорбции протона и кадмия.

Поэтому, цель настоящей работы состояла в создании термодинамической модели гетерофазной системы: гематит - H+ - Cd2+ в широком интервале pH и отношения концентраций сорбат/сорбент с помощью экспериментального метода, представляющего собой комбинацию кислотно-основного потенциометрического титрования и измерения адсорбции кадмия. В экспериментах использовались растворы с низкой ионной силой. Это обусловлено тем, что, во-первых, при этом достигается отсутствие конкуренции между Na+ и Cd2+ за адсорбционные центры, во-вторых, адсорбция протона и гидроксил-иона при низкой ионной силе менее проявлена, поэтому изменения, вызванные присутствием кадмия, выражены сильнее.

При обработке экспериментальных данных использовалась модель поверхностного комплексообразования с двойным слоем постоянной емкости. Использование такой простой и наглядной модели двойного слоя облегчает понимание химизма процессов на поверхности раздела твердое - раствор. Для описания поглощения кадмия во всем диапазоне соотношений кадмий/гематит модель поверхностного комплексообразования была дополнена моделью поверхностного осаждения, развитой в работах [8, 12].

Описание адсорбционных равновесий является весьма нетривиальной задачей. Для подобных равновесий характерны очень сильные отклонения от идеальности, причины которых до сих пор не вполне ясны. Поэтому практически до конца 60-х годов экспериментальные данные описывались эмпирическими уравнениями Фрейндлиха, Тота и т. п. Однако подобные подходы не учитывают реальных процессов на поверхности и вследствие этого часто не дают удовлетворительного описания адсорбционных равновесий.

Общие теоретические представления о строении границы раздела фаз возникли еще в прошлом веке. По этим представлениям на границе раздела при адсорбции ионов возникает двойной электрический слой (ДЭС). В результате к работе сил адсорбции добавляется работа переноса заряда в электростатическом поле. Структура ДЭС в общем случае не ясна. Хорошо известными являтся модели плоского (модель Гельмгольца, 1879 г.), диффузного (модель Гуи - Чепмена, 1910 г.) и комбинированного (модель Штерна-Грэма, 1924 г.) ДЭС. Эти модели позволяют с помощью некоторых допущений оценить поправку к закону действия масс, связанную с электростатическим взаимодействием. Однако практически до конца 60-х годов эти представления не использовались в расчетах адсорбционных равновесий.

Теория поверхностного комплексообразования (The Surface Complexation Theory) в ее современном виде была представлена в работах Шиндлера с сотрудниками и Штумма [20, 21] около тридцати лет назад. Несмотря на большое число различных вариаций, фундаментальные концепции этой теории сохранились в неизменном виде:

* адсорбция на (гидр)оксидах происходит на поверхностных гидроксильных группах;

* адсорбционные реакции могут быть количественно описаны с помощью закона действующих масс;

* поверхностный заряд является следствием адсорбционных реакций;

* влияние поверхностного заряда на адсорбцию может быть учтено поправочным фактором к закону действующих масс, полученным с помощью теории двойного электрического слоя.

Разнообразие существующих адсорбционных моделей определяется в основном типом используемой модели ДЭС и модели поверхностной структуры (гидр)оксида (т. н. 1рКа и 2рКа модели). Кроме того, весьма распространенными являются представления о полифункциональности поверхности. Тем не менее, любая из существующих моделей может быть сведена к системе уравнений, включающей а) закон действующих масс для всех поверхностных равновесий, б) уравнения материального баланса, в) уравнение для расчета поверхностного заряда и г) уравнения используемой модели двойного слоя [22].

При высоких концентрациях сорбция катионов (обычно в виде гидроксида) может происходить по механизму поверхностного осаждения (The Surface Precipitation Model). Эта модель, предложенная в работах [8, 12], позволяет осуществить непрерывный переход от адсорбции на поверхности оксида к осаждению во всем объеме растворе. Таким переходом от адсорбции к объемному осаждению гидроксида является процесс образования твердого раствора с адсорбентом.

В большинстве подобных работ в качестве адсорбента использовался гетит. Интерес к гетиту связан с тем, что этот минерал более устойчив при обычных температурах по отношению гематиту. Поэтому в равнинных странах с умеренным климатом гидроксиды железа, имеющие структуру поверхности типа гетита (?лимонит¦), являются более важным компонентом почв (в отличие от тропических стран, где распространены красноземы, почвы, окрашенные гематитом, так как при повышении температуры гематит оказывается более стабильной фазой). Однако, поверхность гетита имеет более высокую удельную энергию, в связи с чем частицы с большой удельной поверхностью имеют обычно гематитоподобную структуру (?ферригидрит¦). Поэтому, для расчетов адсорбционных равновесий в речных и озерных водах (в которых взвеси гидроксидов железа имеют удельную поверхность порядка 600 м2/г) правильнее использовать данные по адсорбционным свойствам гематита.

Материалы

Нитрат кадмия был синтезирован из двухводного ацетата (РЕАХИМ, чда) (гидролиз в избытке щелочи; состаривание осадка гидроксида в течение 2-х суток; декантирование подщелоченным тридистиллятом - 7 декантаций при рН 9-10; растворение в избытке НNO3; выпаривание раствора и прокаливание при 200оС до исчезновения запаха кислоты).

Для определения концентрации головного стандарта Cd(NO3)2 проба раствора гидролизовалась избытком щелочи, состаренный осадок гидроксида кадмия (чисто белого цвета) дважды декантировался, высушивался при 70оС и взвешивался. Прокаливание гидроксида при 200оС дает полностью дегидратированный оксид кадмия (кофейного цвета). Определения концентрации головного раствора по весу оксида и гидроксида сходятся в пределах 0.7 %.

В работе использовались растворы HNO3 и NaOH с концентрацией 0.2 моль/кг. Раствор кислоты готовился из стандартного фиксанала, проверка концентрации с помощью реактива Trizma Base (SIGMA, USA) (три-оксиметил-амино-метан, C4H11NO3, эквивалентный вес 121.1) показала схождение в пределах 1 %. Раствор гидроксида натрия был получен из предварительно приготовленного и отстоявшегося 50 % раствора (приготовлен из таблетированного едкого натра, ч.д.а., CHEMAPOL, Чехия). Концентрация щелочи определялась при титровании азотной кислотой.

В работе использовался реактив ?железо (III) окись¦, осч (РЕАХИМ, Россия). Удельная поверхность, определенная методом БЭТ по адсорбции аргона составила 6 м2/г. По данным рентгеноструктурного анализа является кристаллическим гематитом. Примесей не обнаружено.

Перед экспериментами гематит отмывался в 0.1 m HNO3. Затем после нескольких декантаций 0.5 m раствором NaNO3 суспензия вымачивалась в 0.1 m NaOH. После нескольких декантаций 0.1 m раствором NaNO3 в суспензию добавлялось небольшое количество HNO3, (чтобы довести рН суспензии до 8.5). Затем суспензия многократно промывалась дистиллированной водой. Отмытый осадок гематита высушивался при температуре 1500C и помещался в эксикатор, в котором для поглощения углекислоты находился стаканчик с концентрированным раствором NaOH.

Методика экспериментов

Опыты проводились в тефлоновой ячейке объемом 350 мл при 25оС. Раствор постоянно перемешивался магнитной мешалкой. В ходе опыта применялась продувка ячейки аргоном для предотвращения попадания атмосферной углекислоты.

Суспензия (30 г гематита / кг H2O) готовилась непосредственно в ячейке. Перед началом опыта суспензия продувалась аргоном в течение 10 часов для освобождения от остаточной углекислоты. Опыты производились при почти постоянной ионной силе (I = 0.0013 ± 0.0003 m (1/2Cd2+, Na+, H+)(NO3-, OH-).

Разность в поглощении кислоты и щелочи в ходе титрования определялась как разница между добавленным и измеренным количеством и рассчитывалось по формуле:

N(a-b) = NHCl - NNaOH - (w + wHCl + wNaOH)([H+] - [OH-]) + d.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее