157477 (Общие положения теории относительности), страница 3

2016-08-01СтудИзба

Описание файла

Документ из архива "Общие положения теории относительности", который расположен в категории "". Всё это находится в предмете "философия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "философия" в общих файлах.

Онлайн просмотр документа "157477"

Текст 3 страницы из документа "157477"

Эйнштейн вывел из постоянства скорости света в движущихся телах невозможность для этих тел превысить скорость света. Тем самым из картины мира исключаются мгновенные, распространяющиеся с бесконечной скоростью, воздействия одного физического объекта на другой. Исключаются также воздействия, распространяющиеся с конечной скоростью, превышающей скорость света. Два события могут быть связаны друг с другом причинной связью, одно событие может быть причиной второго, если время, прошедшее между событиями, не меньше времени, необходимого свету, чтобы пройти расстояние между точками, где произошли эти события. Такое представление о при­чинной связи между событиями можно назвать релятивистским, в от­личие от классического представления, допускавшего, что событие в одной точке может повлиять на событие в другой точке при сколь угодно малом промежутке времени между событиями.

Сопоставляя релятивистскую причинность с классической, можно увидеть некоторую существенную для истории науки связь между ме­ханической картиной мира и ее релятивистским обобщением. Причин­ная связь между двумя событиями в отдаленных точках а1 и а2 сос­тоит в том, что событие в точке а1 вызывает отправление некоторо­го сигнала, который, прибыв в точку а2, вызывает здесь второе со­бытие. Первым событием может быть, например, выстрел, а вторым - попадание снаряда в цель. Причинная связь состоит в движении сна­ряда, играющего в этом примере роль сигнала. Бесконечная скорость сигнала означала бы, что причина (отправление передающего воз­действия сигнала из а1) и следствие (его приход в а2) возникают одновременно. Следовательно, причинная связь может быть представ­лена в чисто пространственном аспекте. Чтобы придать понятию при­чинной связи пространственно-временной вид, нужно найти предел скоростей, и он был найден в постоянной скорости распространения электромагнитного поля.

Обобщение, о котором идет речь, связано с новой трактовкой условий тождественности движущегося объекта. Тождественным себе может быть объект, движение которого подчинено условию: расстоя­ние между точками а1 и а2 пребывания тела в моменты t1 и t2 не должно быть больше, чем скорость света, умноженная на t1-t2. Если это условие не соблюдено, то перед нами не движущийся тождествен­ный себе объект, а различные нетождественные объекты.

Обратимся теперь к динамическим выводам из существования границы механических скоростей.

Если тело движется со скоростью, близкой к скорости света, и на него начинает действовать дополнительная сила, то ускорение не может быть таким, чтобы тело достигло скорости, превышающей ско­рость света. Чем ближе к скорости света, тем больше тело сопро­тивляется силе, тем меньшее ускорение вызывает одна и та же при­ложенная к телу сила. Сопротивление тела ускорению, т.е. масса тела, растет со скоростью и стремится к бесконечности, когда ско­рость тела приближается к скорости света. Таким образом, масса тела зависит от скорости его движения, она растет при растет при возрастании скорости и пропорциональна энергии движения. Что ка­сается массы покоящегося тела, она связана определенным отношени­ем с внутренней энергией - энергией покоящегося тела. Эта энергия равна массе покоя, умноженной на квадрат скорости света. Если энергия движения тела переходит в его внутреннюю энергию (напри­мер, тепловую энергию или энергию химических связей), от соот­ветственно возрастанию энергии возрастает масса покоя.

Но масса покоя отнюдь не равна сумме заключенной в теле теп­ловой, химической и электрической энергии, деленной на квадрат скорости света. Этой сумме соответствует очень небольшая часть всей энергии покоя. Переход энергии движения двух тел в энергию покоя, например при неупругом соударении этих тел, увеличивает энергию на ничтожную величину по сравнению со всей энергией по­коя. В свою очередь переход теплоты в энергию движения тел умень­шает энергию покоя (и массу покоя) на ничтожную долю. Тело с тем­пературой, равной абсолютному нулю, с нулевой химической и элект­рической энергией обладало бы энергией покоя и массой покоя, лишь в ничтожной мере уменьшившимися по сравнению с телом обычной тем­пературы и с обычными запасами химической и электрической энер­гии.

До середины нашего столетия во всех областях техники исполь­зовали лишь подобные ничтожные изменения энергии покоя и массы покоя тел. Сейчас появились практически применяемые реакции, при которых затрачивается или пополняется основной массив заключенной в веществе энергии покоя.

В современной физике существует представление о полном пере­ходе энергии покоя в энергию движения, т.е. о превращении части­цы, обладающей массой покоя, в частицу с нулевой массой покоя и очень большой энергией движения и массой движения. Такие переходы наблюдаются в природе. До практического применения подобных про­цессов еще далеко. Сейчас используются процессы, освобождающие внутреннюю энергию атомных ядер. Атомная энергетика оказалась ре­шающим экспериментальным и практическим доказательством теории относительности Эйнштейна.

Разумеется в 1905 г., когда была опубликована первая статья Эйнштейна о теории относительности, никто не мог предвидеть конк­ретных путей научно-технической революции, призванной воплотить в жизнь новое учение о пространстве, времени и движении. В теории относительности видели поразительно глубокое, стройное и смелое обобщение и истолкование уже известных экспериментальных данных, прежде всего фактов, свидетельствующих о постоянстве скорости света, о ее независимости от прямолинейного и равномерного движе­ния системы, через которую проходит световой луч.

Вместе с тем ученые понимали, что, отвергнув, казалось бы очевидное, классическое понятие одновременности, отказавшись от не менее очевидного классического правила сложения скоростей, до­пуская и обсуждая парадоксальные, на первый взгляд, выводы, физи­ка овладевает очень мощным оружием.

Покинув пристань ньютоновской механики, бросив вызов "оче­видности", не ограничивая отныне свои пути традиционным фарвате­ром, наука может открыть новые берега. Какие плоды зреют на этих берегах, что получит практика от новых теоретических обобщений, тогда еще не знали. Существовала лишь, как уже было сказано, ин­туитивная уверенность, что смелости и широте новых идей должны соответствовать некоторые коренные технические культурные сдвиги.

Как бы то ни было, дело было сделано. В науку были пущены идеи, которым предстояло революционизировать учение о космосе и микромире, учение о движении и энергии, представление о прост­ранстве и времени, а впоследствии стать основой атомной энергети­ки. Эти идеи стали жить своей жизнью.

В 1907-1908 гг. Герман Миньковский (1864 - 1908) придал тео­рии относительности весьма стройную и важную для последующего обобщения геометрическую форму. В статье "Принцип относительнос­ти" (1907) и в докладе "Пространство и время" (1908) теория Эйн­штейна была сформулирована в виде учения об инвариантах четырех­мерной евклидовой геометрии. У нас нет сейчас ни возможности, ни необходимости давать сколько-нибудь строгое определение инвариан­та и присоединить что-нибудь новое к тому, что уже было о нем сказано. Понятие многомерного пространства, в частности четырех­мерного пространства, также не требует здесь строгого определе­ния; можно ограничиться самыми краткими пояснениями.

Ранее уже говорилось, что положение точки на плоскости может быть задано двумя числами, измеряющими длины перпендикуляров, опущенных на оси некоторой координатной системы. Если перейти к иной системе отсчета, координаты каждой точки изменятся,но расс­тояние между точками при таком координатном преобразовании не изменятся. Инвариантность расстояний при координатных преобразо­ваниях может быть показана не только в геометрии на плоскости, но и в трехмерной геометрии. При движении геометрической фигуры в пространстве координаты точек меняются, а расстояния между ними остаются неизменными. Как уже было сказано, существование инвари­антов координатных преобразований можно назвать равноправностью систем отсчета, равноценностью точек, в каждой можно поместить начало координатной системы, причем переход от одной системы к другой не сказывается на расстояниях между точками. Подобная рав­ноценность точек пространства называется его однородностью. В сохранении формы тел и соблюдении неизменных законов их взаимо­действия при преобразованиях выражается однородность пространс­тва. Однако при очень больших скоростях, близких к скорости све­та, становится очень существенной зависимость расстояния между точками от движения системы отсчета. Если одна система отсчета движется по отношению к другой, то длина стержня, покоящегося в одной системе, окажется уменьшенной при измерении ее в другой системе. В теории Эйнштейна пространственные расстояния (как и промежутки времени) меняются при переходе от одной системы отсче­та к другой, движцщейся относительно первой. Неизменной при таком переходе остается другая величина, к которой мы и перейдем.

Миньковский сформулировал постоянство скорости света следую­щим образом.

При координатном преобразовании остается неизменным расстоя­ние между двумя точками, например путь, пройденный движущейся частицей. Чтобы вычислить это расстояние - путь, пройденный час­тицей, - нужно взять квадраты приращений трех координат, т.е. квадраты разностей между новыми и старыми значениями координат. Согласно соотношениям геометрии Евклида, сумма этих трех квадра­тов будет равна квадрату расстояния между точками.

Теперь мы прибавим к трем приращениям пространственных коор­динат приращение времени - время, прошедшее от момента пребывания частицы в первой точке до момента пребывания ее во второй точке. Эту четвертую величину мы также берем в квадрате. Нам ничто не мешает назвать сумму четырех квадратов квадратом "расстояния", но уже не трехмерного, а четырехмерного. При этом речь идет не о расстоянии между пространственными точками, а об интервале между пребыванием частицы в определенный момент в одной точке и и пре­быванием частицы в другой момент в другой точке. Точка смещается и в пространстве и во времени. Из постоянства скорости света вы­текает, как показал Миньковский, что при определенных условиях (время нужно измерять особыми единицами) четырехмерный пространс­твенно-временной интервал будет неизменным, в какой бы системе отсчета мы ни измеряли положения точек и время пребывания частицы в этих точках.

Само по себе четырехмерное представление движения частицы может быть легко усвоено, оно кажется почти очевидным и, в сущ­ности привычным. Всем известно, что реальные события определяются четырьмя числами: тремя пространственными координатами и време­нем, прошедшим до события с начала летосчисления, или с начала года, или от начала суток. Будем откладывать на листе бумаги по горизонтальной прямой место какого-либо события - расстояние это­го места от начального пункта, например расстояние до точки, дос­тигнутой поездом, от станции отправления. По вертикальной оси от­ложим время, когда поезд достиг этой точки, измеряя его с начала суток или с момента выхода поезда со станции отправления. Тогда мы получим график движения поезда в двумерном пространстве, на географической карте, лежащей на столе, а время показывать верти­калями над картой. Тогда мы не обойдемся чертежом, пнадобится трехмерная модель, например проволока, укрепленная над картой. Она будет трехмерным графиком движения: высота проволоки в каждой точке над лежащей картой будет изображать время, а на самой карте проекция проволоки изобразит движение поезда по местности.

Изобразим теперь не только перемещение поезда на плоскости, но и его подъемы и спуски, т.е. его движение в трехмерном прост­ранстве. Тогда вертикали уже не могут изобразить время, они будут означать высоту поезда над уровнем моря. Где е откладывать время

- четвертое измерение? Четырехмерный график нельзя построить и даже нельзя представить себе. Но математика уже давно умеет нахо­дить подобные геометрические величины, пользуясь аналитическим методом, производя вычисления. В формулы и вычисления наряду с тремя пространственными измерениями можно ввести четвертое - вре­мя и, отказавшись от наглядности, создать таким образом четырех­мерную геометрию.

Если бы существовала мгновенная передача импульсов и вообще сигналов, то мы могли бы говорить о двух событиях, происшедших одновременно, т.е. отличающихся только пространственными коорди­натами. Связь между событиями была бы физическим прообразом чисто пространственных трехмерных геометрических соотношений. Но, как уже говорилось, Эйнштейн в 1905 г. отказался от понятий абсолют­ной одновременности и абсолютного, независимого от течения време­ни. Теория Эйнштейна исходит из ограниченности и относительности трехмерного, чисто пространственного представления о мире и вво­дит более точное пространственно-временное представление. С точки зрения теории относительности в картине мира должны фигурировать четыре координаты и ей должна соответствовать четырехмерная гео­метрия.

В 1908 г. Миньковский представил теорию относительности в форме четырехмерной геометрии. Он назвал пребывание частицы в точке, определенной четырьмя координатами, "событием", так как под событием в механике следует понимать нечто определенное в пространстве и во времени - пребывание частицы в определенной пространственной точке в определенный момент. Далее он назвал со­вокупность событий - пространственно-временное многообразие - "миром", так как действительный мир развертывается в пространстве и во времени. Линию, изображающую движение частицы, т.е. четырех­мерную линию,каждая точка которой определяется четырьмя координа­тами, Миньковский назвал "мировой линией".

Длина отрезка "мировой линии" инвариантна при переходе от одной системы отсчета к другой, прямолинейно и равномерно движу­щейся по отношению к первой. В этом и состоит исходное утвержде­ние теории относительности, из него можно получить все ее соотно­шения.

Следует подчеркнуть, что геометрические соотношения, с по­мощью которых Миньковский изложил теорию относительности, подчи­няются Евклидовой геометрии. Мы можем получить соотношения теории относительности, предположив, что четырехмерное "расстояние" вы­ражается таким же образом через четыре разности - три разности пространственных координат и время, прошедшее между событиями, - как и трехмерное расстояние выражается в евклидовой геометрии че­рез разности пространственных координат. Для этого, как уже гово­рилось, необходимо только выразить время в особых единицах. Длина отрезка мировой линии определяется по правилам евклидовой геомет­рии, только не трехмерной, а четырехмерной. Ее квадрат равен сум­ме четырех квадратов приращений пространственных координат и вре­мени. Иными словами, это - геометрическая сумма приращений четы­рех координат, из которых три - пространственные, а четвертая - время, измеренное особыми единицами. Мы можем назвать теорию от­носительности учением об инвариантах четырехмерной евклидовой ге­ометрии. Поскольку время измеряется особыми единицами, то говорят о псевдоевклидовой четырехмерной геометрии.

Сумма квадратов четырех приращений - квадрат четырехмерного расстояния между событиями, квадрат длины отрезка мировой линии - не меняется при переходе от системы K к движущейся по отношению к ней системе K'. Четырехмерное "расстояние"является инвариантом преобразований четырехмерной геометрии, соответствующих переходу от одной системы отсчета K к другой системе K', движущейся отно­сительно первой прямолинейно и равномерно. Инвариантность следует из неизменности скорости света при переходе от K к K'.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее