ref-18824 (Проект восстановления коленчатого вала ЗИЛ 130 с применением ультразвукового упрочнения), страница 2

2016-08-01СтудИзба

Описание файла

Документ из архива "Проект восстановления коленчатого вала ЗИЛ 130 с применением ультразвукового упрочнения", который расположен в категории "". Всё это находится в предмете "транспорт" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "транспорт" в общих файлах.

Онлайн просмотр документа "ref-18824"

Текст 2 страницы из документа "ref-18824"

Напекание порошка. Сормайт – 1 должно проводится при высоких удельных давлениях (60…80 МН/м2) и пониженных напряжениях (0,73…1,05 В на 1 мм толщины наплавленного слоя).

Основное влияние на качество слоя его сцепление с металлом оказывает скорость напекания, влияющая на температурный режим в процессе напекания (2.3.)

При напекании на пониженных скоростях 0,12…0,17 м/мин, слой получается весьма плотным (пористость 6÷8%). При повышении скорости напекания на 0,25 м/мин пористость несколько возрастает до 10÷12%, а качество сцепления улучшается в результате уменьшения поверхности окисления детали и порошка в процессе нагрева и формирования слоя [1].

Напекание порошка ведется «узким» роликом 4 мм по винтовой линии или «широким» на всю поверхность напекания с учетом соблюдения вышеприведенных режимов [1,3,15].

Рисунок 2.3. Температура в граничной зоне в зависимости от напряжения холостого хода и скорости напекания.

1-Vн = 0,37 м/мин;

2-Vн = 0,25 м/мин;

3-Vн = 0,17 м/мин.

2.3. Электрометаллизация.

Металлизация – один из распространенных способов получения металлических покрытий поверхностей нанесением на эти поверхности расплавленного металла.

Сущность процесса в следующем: металл, расплавленный дугой, струей сжатого воздуха (давление до 0,6 МПа) покрывает поверхность восстанавливаемой детали. Процесс дуговой металлизации осуществляется специальным аппаратом – металлизатором (рис. 2.4.).

Рисунок 2.4. Схема металлизатора.

1 – электродная проволока;

2 – сопло;

3 – провода от трансформатора;

4 – деталь.

Аппарат действует следующим образом: с помощью роликов по направляющим наконечникам непрерывно подается две проволоки,, к которым подведен электрический ток. Возникающая между проволоками электрическая дуга расплавляет металл. Одновременно по воздушному соплу в зону дуги поступает сжатый газ под давлением. Большая скорость движения частиц металла (120… 300 м/с) и незначительное время налета, исчисляемое тысячами долями секунды, обуславливает в момент удара его пластическую деформацию, заполнение частицами неровностей и пор поверхности детали, сцепление частиц между собой и с поверхностью, в результате чего образуется сплошное покрытие.

Толщина наплавляемого слоя от нескольких микронов до 10 мм и более.

Питание электрометаллизатора осуществляется либо от специальных трансформаторов с дополнительными отводами от витков вторичной обмотки, допускающие напряжение дуги 20 – 55 В (с промежутком через 4 – 5 В) при токе не менее 250 А.

Рекомендуемые материалы электродной проволоки: сталь 45, Нп – 30 ХГСА.

Металлизация обеспечивает высокую твердость напыленного слоя. Однако, применяя металлизацию, необходимо учитывать, что нанесенный слой не повышает прочности детали. По этому применять металлизацию для восстановления деталей с ослабленным сечением не следует. Кроме этого необходимо знать, что сцепляемость напыленного слоя с осн6овным металлом недостаточно [2,3,14].

2.4. Плазменное напыление композитных порошковых материалов.

В специальных устройствах, называемых плазмотронами, плазмообразующий газ (аргон, азот, углекислый газ), протекая сквозь слой электрического разряда ионизируется и превращается в плазму. Рабочая температура струи достигает 7000 – 15000 0С.

Схема комбинированной плазменной наплавки проволокой с газопорошковой защитной средой показана на рис. 2.5.

Рисунок 2.5. Схема плазменной наплавки.

1 - деталь;

2 - бункер;

3 - плазменная головка;

4 - источник питания;

5 – сварочная проволока.

Плазменные покрытия используются для создания износостойких слоев на рабочих поверхностях.

Сущность метода состоит в бомбардировке обрабатываемой поверхности частицами порошка, разогретыми до пластического состояния. Передачу тепловой и кинетической энергии частицами порошка осуществляют плазменным (за счет введения порошков металлов в плазменную струю) и газопламенным (введение порошков в газовую смесь) способами.

Для устойчивости работы плазмотрона электрическая дуга должна быть сформирована и стабилизирована вдоль его продольной оси.

При плазменном напылении используют порошки самофлюсующихся сплавов системы Ni-Cr-B-Si-C марок СНТН, ПГХН 80 СР, ВСНГ Н с температурой плавления 1050 0С зернистостью 20 – 150 мкм, обеспечивающие твердость обрабатываемых поверхностей до 35 NR [2]. Недостатками плазменно напыленных покрытий являются низкая прочность сцепления с основой, адгезионная прочность и термостойкость покрытия, что связанно с различными коэффициентами температурного расширения покрытия и о основы. Обладая значительной пористостью, плазменно-напыленные покрытия не защищают от окисления, что приводит к ускоренному разрушению (отслаиванию) покрытия. Увеличить адгезионную прочность, термостойкость покрытия в окислительных средах можно азотированием поверхности до образования нитридной прослойки [1,2,4].

3. Анализ способов ППД.

Обкатывание и раскатывание шаровым инструментом.

Шаровый инструмент можно классифицировать по следующим признакам [4]:

1. По характеру обрабатываемых поверхностей:

- для наружных цилиндрических;

- для внутренних цилиндрических;

2. По числу деформирующих элементов:

- одношаровой;

- многошаровой.

Шаровый инструмент применяют для обкатки специальных или сложных профильных поверхностей: сфер, галтельных переходов, желобов подшипников и т.п.

Шары используемые для ППД изготавливают из подшипниковых сталей ШХ 15, ШХ15СГ, ШХ20СГ, 18ХГТ, в особых случаях можно применять коррозийно-стойкие стали 11Х18М, 95Х18.

Параметр шероховатости наиболее интенсивно уменьшается при удельных нагрузках 1000-1400 МПа, прямопропорционален радиусу шара. Большое влияние на шероховатость оказывает исходный параметр поверхности, при обкатывании она повышается для всех металлов, и чем выше прочность обкатываемого материала, тем больше оптимальное давление обкатывания [4].

Твердость значительно повышается на глубину до 2 мм однако на глубине 1,0-1,5 мм повышение твердости становится незначительным. Наибольшее увеличение твердости происходит у материалов со структурой мартенсита, не подвергшихся отпуску. При этом поверхностная твердость, например стали У8,ШХ15, 40Х увеличивается до 15%(ШХ15), до 25% (У8) по отношению к исходным.

Обкатывание роликовых дорожек подшипника (HRC 35) с силой 750 Н шаром диаметром 4,5 мм при подаче 0,1 мм/об снижает параметр шероховатости в 5-8 раз, повышает микро твердость до 25% при глубине наклепанного слоя 0.ю8 мм.

Особенности шаровых устройств - использование стандартных шаров с высокими точностью обработки и качеством поверхности, незначительные силы обработки, связанные с точечным (условно) контактом инструмента и обрабатываемой поверхности, низкая подача и производительность [2].

3.1. Обкатывание роликовым инструментом.



Для обкатывания используют ролики различной конфигурации, который обычно устанавливают под некоторым углом к оси обрабатываемой детали (рис. 3.1.)

Рисунок 3.1. Схема обкатывания.

1-обкатываемая деталь; S – подача, мм/мин;

2-ролик. n – частота вращения, об/мин;

L – поперечный ход, мм.

Ролики для раскатывания и обкатывания бывают двух видов: стержневые (рис. 3.2.) и кольцевые; их подразделяют на 15 типов [4].

Рисунок 3.2. Стержневые ролики.

а).конический ролик; б).цилиндрический ролик.

У поверхности роликов должна быть твёрдость HRC 62…52, поэтому их изготавливают преимущественно из сталей ШХI5 и ШХ15СГ (ГОСТ 801-87). У накатывающих и заходных поверхностей роликов Ra 0, 1 мкм.

Стержневые ролики рекомендуется применять в много роликовом накатном инструменте сепаратного типа. Кольцевые ролики рекомендуется применять преимущественно в головках одно-, двух- и трёхроликовых приспособлений.

Отпечаток ролика во время обкатывания превращается в пластически деформированную канавку, которая при обработке цилиндрических поверхностей с подачей представляет собой винтовую линию.

Разрушение поверхностного слоя может происходить не только при силе превосходящей кинетическую, но и при небольшой нагрузке N велико. Допустимое N зависит в большей мере от марки обрабатываемого материала: для достижения Rа = 0, 16 мкм незакаленной стали необходимо, чтобы 20 < 200, а чугуна 35 < 60.

Итак, при обкатывании необходимо назначать минимальную силу, при которой обеспечивается обработка с максимальной производительностью.

На силу обкатывания непосредственно влияют передний и задний углы вдавливания LI0 и LII0. Установлено, что оптимальным для большинства случаев является La = 2…30, La = 50 так зависимость параметра шероховатости поверхности от силы обкатывания (рис.3.3.) носит параболический характер.

Рисунок 3.3. Зависимость Ra от силы обкатывания Р роликом со сферическим профилем.

Сталь 45 Г2; S = 0,21 мм/мин; D = 130 мм; Г = 20 мм.

Следующим по значению параметром обкатывания после силы является подача, которая может быть радиальной и осевой. Наилучшее качество поверхности достигается при обработке с радиальной передачей, однако на практике детали обрабатывают с осевой подачей. С уменьшением подачи шероховатость поверхности уменьшается до определённого предела, затем начинает возрастать. Оптимальное S = 0,25 [4].

3.2. Алмазное выглаживание.



Выглаживание заключается в пластическом деформировании обрабатываемой поверхности скользящим по ней инструментом- выглаживателем.

Для изготовления выглаживателей используют природные и синтетические алмазы.

Синтетические алмазы с размером зерна более З мм в виде поликристаллов получили название баллас (АСБ) и карбонидо (АСГIК) по аналогии с наименованием соответствующих природных алмазов.

Особенность их структуры обеспечивает изотропность физико-механических свойств, что даёт возможность инструменту работать с переменными нагрузками.

Алмазы АСБ имеют шаровидную форму, чётко выраженной радиально-лучистой структурой, размеры их зёрен достигают б мм. Алмазы АСПК имеют форму цилиндра диаметром 2 — 4,5 мм и высотой 2 — 5 мм. Структура их также радиально-лучистая, но более совершенная.

В результате пластического деформирования Δ обрабатываемой поверхности сглаживаются исходные неровности, и образуется новый микрорельеф высотой неровностей профиля Rz b. Размер детали уменьшается на величину остаточной деформации Δ Пл [4].

Исходными параметрами является предварительный натяг и сила выглаживания.

Решающее значение для качества поверхности детали имеет шероховатость инструмента (рис.3.4).

Коэффициент трения зависит от наиболее существенных факторов силы выглаживания и твердости обрабатываемой поверхности. Максимальное значение коэффициента трения 0,1 ,а обычно оно составляет 0,05 — 0,08.



Рисунок 3.4. Зависимость параметра шероховатости детали от параметра шероховатости инструмента.

Температура в очаге деформирования на глубине не более 0,1 мм не превышает 200-400 при скорости выглаживания менее 100 м/мин.

При увеличении скорости до 400 — 500 м/мин температура возрастает в 2 — 2,5 раза. Параметрами выглаживания, влияющие на шероховатость, являются: сила выглаживания, подача и радиус рабочей части инструмента. Сила выглаживания большая 200 ÷ 250 Н для деталей из высококачественных материалов и большая 100 ÷ 150 Н для деталей из материалов средней твёрдости — нецелесообразны.

Основным критерием выбора радиуса сферы инструмента является твёрдость материала обрабатываемой детали. Для деталей из мягких сплавов и цветных металлов и их сплавов этот радиус должен составлять 2,5 ÷ 3,5 мм, для деталей средней твердости – 1,5 ÷ 2 мм, для деталей из высокопрочных сталей (НRC>60) - 1÷1,5 мм.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее