135884 (Теория электрической связи), страница 2

2016-08-01СтудИзба

Описание файла

Документ из архива "Теория электрической связи", который расположен в категории "". Всё это находится в предмете "радиофизика и электроника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "радиоэлектроника" в общих файлах.

Онлайн просмотр документа "135884"

Текст 2 страницы из документа "135884"


Результаты расчетов сведем в таблицу

ξx10-3

–18

–16

–14

–12

–10

–8

–6

–4

–2

–1

0

1

W(ξ)

0

0,04

0,26

1,25

4,76

14,16

33,07

60,63

87,23

95,53

98,47

95,53

ξx10-3

2

4

6

8

10

12

14

16

18

W(ξ)

87,23

60,63

33,07

14,16

4,76

1,25

0,26

0,04

0

    1. Вероятность ошибки на выходе приемника

Рассчитаем вероятность ошибки для заданного вида сигнала и способа приема.

h находится из соотношения


г де h2 – отношение сигнал/шум.

Т огда


В ычислим полосу пропускания фильтра:

г де Т = 1/V – длительность элемента сигнала, определяемая скоростью передачи (модуляции) сигналов V.

И спользуя формулу

рассчитаем и построим зависимость Р(h). Результаты расчета сведем в таблицу.

h

0

1

1,5

2

2,5

3

3,5

4

P(h)

0,5

0,15866

0,06681

0,02275

0,00621

0,00135

0,000233

0,000032

3.5. Выигрыш в отношении сигнал/шум при применении оптимального приемника

В предположении оптимального приема (фильтрации) сигналов определим максимально возможное отношение сигнал/шум h20.

где N0 – спектральная плотность помехи.

О тношение сигнал /шум для рассчитанного приемника:

т о есть энергетический выигрыш в отношении сигнал/шум оптимального приемника по сравнению с рассчитанным – в 2 раза.

3.6. Максимально возможная помехоустойчивость при заданном виде сигнала

Для определения максимально возможной помехоустойчивости приема ЧМ сигналов определим среднюю вероятность ошибки при оптимальном приеме.

г де

Т огда

3.7. Принятие решения приемником по трем независимым отсчетам

Определим, какой символ будет зарегистрирован на приеме при условии, что решение о переданном символе принимается по совокупности трех независимых некоррелированных отсчетов Z1 = Z(t1), Z2 = Z(t2), Z3 = Z(t3) на длительности элемента сигнала Т, имеющих следующие значения: Z1 = 0,0022; Z2 = 0,0013; Z3 = 0,0024. Для принятия решения воспользуемся отношением правдоподобия, сравнив его с пороговым отношением.

В случае принятия решения по трем независимым отсчетам отношение правдоподобия примет вид:

Сравнивая λ с λ0, получаем: 4,39 > 0,67, т.е. λ > λ0, следовательно, передавался сигнал «1».

3.8. Вероятность ошибки при использовании метода синхронного накопления

Для принятия решения по трем независимым отсчетам используется метод синхронного накопления. При использовании этого метода приема повышается помехоустойчивость. Суть метода синхронного накопления заключается в суммировании отсчетов смеси сигнала и помехи. После оценки и суммирования отсчетов решающим устройством принимается решение о передаваемом сигнале.

Суммирование отсчетов сигнала ведется по амплитуде, т.к. его отсчеты коррелированны с коэффициентом корреляции, равным единице. Суммирование отсчетов помехи ведется по мощности, отсчеты помехи являются некоррелированными. Тогда мощность сигнала равна

Р с ∑ = (NA)2, мощность помехи Р п ∑= 2, где N - количество отсчетов. Отношение сигнал/шум в этом случае равно:


О пределим среднюю вероятность ошибки:

Сравним помехоустойчивости приема методом синхронного накопления и приема методом однократного отсчета:

Таким образом, помехоустойчивость приема методом синхронного накопления в 618,61 раз выше по сравнению с методом однократного отсчета.

3.9. Расчет шума квантования при передаче сигналов методом ИКМ

При передаче сигналов методом ИКМ непрерывное сообщение преобразовывается в цифровой сигнал, т.е. в последовательность символов, сохраняя содержащуюся в сообщении существенную часть информации, определяемой ее эпсилон-энтропией.

Для преобразования непрерывного сообщения в цифровую форму используются операции квантования и кодирования. Полученная таким образом последовательность квантованных отсчетов кодируется и передается по дискретному каналу как всякое дискретное сообщение. На приемной стороне непрерывное сообщение после декодирования восстанавливается (с той или иной точностью ).

В отличие от непрерывного канала передачи в составе цифрового канала предусмотрены устройства для преобразования непрерывного сообщения в цифровую форму – аналого-цифровой преобразователь (АЦП) на передающей стороне и устройства преобразования цифрового сигнала в непрерывный – цифро-аналоговый преобразователь (ЦАП) на приемной стороне.

Преобразование непрерывных сообщений в цифровую форму в системах ИКМ сопровождается округлением мгновенных значений до ближайших разрешенных уровней квантования. Возникающая при этом погрешность представления является неустранимой, но контролируемой (так как не превышает шага квантования). Выбрав малый шаг квантования, можно обеспечить эквивалентность исходного и квантованного сообщений. Погрешность (ошибку) квантования, представляющую собой разность между исходным сообщением и сообщением, восстановленным по квантованным отсчетам, называют шумом квантования.

Определим мощность шума квантования и отношение сигнал/шум h2 при максимальной амплитуде аналогового сигнала.

Отношение сигнал/шум в данном случае определяется следующим выражением:

где b2(t) – мощность сигнала, ε2 (t) – мощность шума квантования.

Мощность сигнала равна:

Здесь bmax – максимальная амплитуда аналогового сигнала на входе АЦП, П – пикфактор входного сигнала.

Мощность шума квантования равна:

г де

здесь L – число уровней, n – число разрядов двоичного кода. n = 8.

Тогда

О тношение сигнал/шум тогда будет равно:

Шум квантования не связан с помехами и целиком определяется выбором числа уровней квантования. Его можно сделать сколь угодно малым, увеличивая число уровней квантования. При этом придется увеличивать число кодовых символов, приходящихся на каждый отсчет, а следовательно, сокращать длительность символа и расширять спектр сигнала в канале.

3.10. Прием с использованием сложных сигналов и согласованного фильтра

Использование для передачи сложных сигналов и согласованного фильтра обеспечивает эффективную защиту от импульсных и иногда от сосредоточенных помех.

Прием с использованием сложных сигналов и согласованного фильтра имеет большую помехоустойчивость, чем прием с использованием простых сигналов. Но основным недостатком этого метода является снижение скорости передачи информации вследствие увеличения длительности сложных сигналов.

3.11.Форма сложных сигналов при передаче символов «1» и «0»

S1(t) = {010101110010}

S2(t) = {101010001101}

S1(t) = { –1 1 –1 1 –1 1 1 1 –1 –1 1 –1 }

S2(t) = { 1 –1 1 –1 1 –1 –1 –1 1 1 –1 1 }

Ф
















орма сложного сигнала при передаче символа «1»











Форма сложного сигнала при передаче символа «0»:





























3.12. Импульсная характеристика согласованного фильтра

Импульсная характеристика – отклик фильтра на очень короткий импульс (дельта-функцию). Импульсная переходная характеристика согласованного фильтра представляет собой зеркальное отображение временной функции сигнала.

g(t) = aS(T –t), где а = const,




























g(t) = { –1 1 –1 –1 1 1 1 –1 1 –1 1 –1 }

3.13. Схема согласованного фильтра для приема сложных сигналов


СФ

(t0)


4t0


5t0


6t0


3t0


7t0


8t0


9t0


11t0


2t0


10t0


t0




ФНЧ



































Х(-1)


Х(-1)


Х(-1)


Х(-1)


Структурная схема согласованного фильтра для приема сложных сигналов будет иметь вид:







Х(-1)


Х(-1)







Если на вход линии в начальный момент времени подается один короткий единичный импульс, аппроксимирующий δ-функцию, то с отводов снимаются такие же импульсы, разнесенные на интервалы Δt, которые, пройдя через сумматор, поступают на вход ФНЧ.

3.14. Форма сигналов на выходе согласованного фильтра при передаче символов «1» и «0»




































































































































































































Форма сигналов на выходе согласованного фильтра с точностью до постоянного множителя представляет собой корреляционную функцию входного сигнала: y(t) = aBs(Tt ). Найдем эту функцию.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее