referat (Система наведения ракеты ФКР-1), страница 3

2016-08-01СтудИзба

Описание файла

Документ из архива "Система наведения ракеты ФКР-1", который расположен в категории "". Всё это находится в предмете "радиофизика и электроника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "радиоэлектроника" в общих файлах.

Онлайн просмотр документа "referat"

Текст 3 страницы из документа "referat"

Формирование предварительной команды 2А и исполнительной команды 2Б происходит по одному и тому же принципу. Предварительная команда подготавливает цепи станции для приема исполнительной команды.

Исполнительная команда воздействует на канал тангажа автопилота, который вводит ракету в пикирование. Одновременно команда 2Б подается на механизм задержки, который через определенное время выдает команду 3 на боевую часть ракеты, и в канал передачи ответных сигналов для выключения ответчика.

3.7. Программное устройство.

Программное устройство предназначено для управления работой станции НБ.

Программное устройство включает в себя:

  • механизм времени (блок НБ-9)

  • механизм задержки (блок ПС-2)

Программное устройство выполняет следующие функции:

  • перемещает подвижный контакт потенциометра дальности;

  • выдает команду 1. По этой команде выход станции НБ соединяется со входом автопилота АПМ;

  • переводит приемник из режима непрерывного приема в режим приема со стробированием;

  • осуществляет блокировку целей формирования команды 2Б на начальном участке траектории полета ракеты;

  • выдает команду 2В по истечении заранее установленного времени;

  • выдает команду 3 на боевую часть ракеты.

4. БЛОК-СХЕМА СТАНЦИИ НБ.

Блок-схема станции НБ представлена на рис. 9.1 Ниже дается описание этой схемы по блокам.

4.1. Блок НБ-1 (приемо-передающая антенна).

Блок НБ-1 предназначен для приема импульсных сигналов наземной станции управления и для излучения ответных сигналов. Блок НБ-1 является диэлектрической штыревой антенной.

Блок имеет горизонтальную поляризацию и состоит из полистиролового штыря, круглого волновода, переходника и гибкого волновода. Переходник служит при приеме для преобразования электромагнитных волн типа Н11, передаваемых из антенного штыря по круглому волноводу, в волны типа Н10, которые передаются по прямоугольному волноводу в блок НБ-2. При передаче происходит обратное преобразование.

4.2. Блок НБ-2 (высокочастотная головка).

Блок НБ-2 является первым блоком канала приема сигнала. В блоке размещены:

  • преселектор.

  • гетеродин.

  • направленный ответвитель.

  • кристаллический смеситель.

  • предварительный усилитель промежуточной частоты.

  • схема стабилизации частоты клистрона (СЧК).

Преселектор осуществляет избирательность по высокой частоте. Он выполнен в виде объемного резонатора и имеет элементы подстройки.

В качестве гетеродина используется клистрон К-38В (Л13). Постоянство частоты колебаний клистрона поддерживается схемой стабилизации частоты клистрона (СЧК).

Направленный ответвитель не пропускает принятый сигнал на вход эталонного резонатора схемы СЧК и высокочастотные колебания в антенну.

Для подбора оптимальной связи гетеродина с кристаллическим смесителем в волноводный тракт блока введен аттенюатор.

После кристаллического смесителя (Д1) сигнал промежуточной частоты подается на вход предварительного усилителя промежуточной частоты (Л1-Л5). С выхода усилителя импульсы промежуточной частоты по коаксиальному кабелю поступают в блок НБ-3. По этому же кабелю из блока НБ-3 на последние четыре каскада предварительного усилителя промежуточной частоты подается напряжение АРУ.

Схема СЧК представляет собой систему автоматического регулирования. Принцип стабилизации частоты основан на его отражателе. Частота настройки клистрона задается эталонным резонатором, а схема СЧК удерживает ее вблизи резонансной частоты этого резонатора.

При уходе частоты клистрона схема вырабатывает управляющее напряжение, подаваемое на отражатель клистрона, которое в рабочей области изменяется примерно пропорционально измерению расстройки клистрона относительно эталонного резонатора. Величина и знак изменения управляющего напряжения таковы, что частота клистрона возвращается с некоторой допустимой ошибкой к своему прежнему значению.

Измерение величины расстройки в эталонном резонаторе осуществляется путем частотной модуляции колебаний клистрона синусоидальным напряжением с частотой 155 кгц. Это напряжение вырабатывается генератором опорного напряжения (Л12) и через катодный повторитель (Л12) подается на катод клистрона.

Из общего волноводного тракта высокочастотные колебания клистрона попадают в эталонный резонатор. Благодаря резко выраженным резонансным свойствам эталонного резонатора частотно-модулированные колебания приобретают амплитудную модуляцию (фиг. 10).

Рабочая область схемы СЧК выбрана в пределах верхнего изгиба правой ветви резонансной кривой эталонного резонатора, где крутизна кривой изменяется от нулевого до максимального значения (участок ab). Средняя частота настройки клистрона выбирается примерно посередине рабочей области (точка d).

Из фиг. 10 видно, что в области кривой ab при увеличении расстройки клистрона относительно резонансной частоты эталонного резонатора, глубина амплитудной модуляции высокочастотных колебаний увеличивается, а при уменьшении расстройки - уменьшается.

Первый детектор схемы СЧК (Д2) выделяет огибающую амплитудно-модулированных колебаний. Выделенное напряжение с частотой 155 кгц усиливается трехкаскадным резонансным усилителем (Л6-Л8) и через каскад совпадений (Л9) подается на второй детектор схемы СЧК (Л10). Детектор выпрямляет это напряжение и подает его в отрицательной полярности на вход управляющего каскада (Л11).

Управляющий каскад представляет собой транзитронный генератор пилообразного напряжения. При отсутствии на его входе запирающего напряжения, поступающего со второго детектора схемы СЧК (Л10), пилообразное напряжение генератора подается на отражатель клистрона. Величина этого напряжения такова, что клистрон периодически с частотой пилообразного напряжения меняет частоту колебаний во всей зоне генерации, за счет чего осуществляется поиск рабочей области частот эталонного резонатора.

При попадании частоты клистрона в область аd характеристики резонатора появившееся на втором детекторе схемы СЧК отрицательное напряжение приводит к срыву генерации транзитронного генератора. Поиск прекращается и генератор начинает работать как усилитель постоянного тока. Частота клистрона устанавливается около точки d, где и осуществляется режим стабилизации.

В области частот, соответствующих левой ветви частотной характеристики эталонного резонатора, колебания клистрона будут также модулированы по амплитуде, но с противоположной фазой огибающей. За счет этого на участке ch частота клистрона может быть также стабилизирована, но с большей расстройкой относительно резонансной частоты. Для устранения этой неоднозначности в схему СЧК введен каскад совпадений (Л9), на который подается два напряжения - напряжение огибающей с выхода резонансного усилителя и опорное напряжение от генератора опорного напряжения (Л12). Напряжение огибающей передается каскадом совпадений на второй детектор только при условии, что его фаза совпадает с фазой опорного напряжения. При различии фаз на 180° каскад совпадений не пропускает напряжения огибающей на второй детектор.

4.3. Блок НБ-3 (приемник).

Блок НБ-3 (приемник) является вторым блоком канала приема сигнала. В блоке размещены элементы, входящие в следующие каналы функциональной схемы:

  • канал приема сигналов.

  • канал управления.

  • канал формирования стробирующих импульсов.

4.3.1. Канал приема сигналов

В канал приема сигналов входят следующие элементы блока НБ-3:

  • усилитель промежуточной частоты;

  • первый видеотракт, обеспечивающий работу канала управления;

  • второй видеотракт, обеспечивающий работу синхронизации и канала формирования команды 2;

  • схема АРУ;

  • схема демодуляции;

  • схема контроля СЧК.

Усилитель промежуточной частоты (УПЧ) предназначен для усиления импульсов промежуточной частоты, поступающих с предварительного усилителя. УПЧ состоит из шести каскадов, собранных на лампах Л1-Л4 и Л6, Л7. Полоса пропускания усилителя равна 9 Мгц. В первых двух каскадах УПЧ осуществляется стробирование канала приема. Стробирующие импульсы подаются на пентодные сетки ламп.

На время излучения ответного сигнала приемник запирается положительными импульсами-подавителями, которые поступают из канала синхронизации (из блока НБ-5) на катоды ламп первых двух каскадов УПЧ.

Напряжение АРУ подается на первый каскад УПЧ.

С выхода четвертого каскада УПЧ (Л4) сигнал подается в первый видеотракт, с выхода шестого каскада УПЧ (Л7) - подается в цепь контроля СЧК и во второй видеотракт.

В первом видеотракте с помощью видеодетектора (Л5) импульсы промежуточной частоты преобразуются в видеоимпульсы. Двухкаскадный видеоусилитель (Л21, Л24) обеспечивает необходимое усиление сигнала. Усиленные импульсы через катодный повторитель (Л22) подаются на детектор напряжения ошибки, являющийся входным каскадом канала управления. На первый каскад выдеоусилителя (Л21) подается напряжение АРУ, вырабатываемое детектором напряжения ошибки (Л23), выполняющим также функции детектора АРУ.

Второй видеотракт состоит из видеодетектора (Л8), двухкаскадного видеоусилителя (Л13, Л14) и двух катодных повторителей, собранных на лампе Л15.

С выхода шестого каскада УПЧ (Л7) импульсы промежуточной частоты поступают на вход видеодетектора (Л8). После детектирования импульсы усиливаются видеоусилителем (Л13, Л14) и через катодные повторители (Л15) подаются на схему АРУ и демодулятор канала приема сигналов (блок НБ-3), а также в канал синхронизации и в канал формирования команды 2 (блок НБ-5).

Схема автоматической регулировки усиления (АРУ) предназначена для автоматического поддержания постоянства среднего уровня видеоимпульсов на выходе канала приема сигналов независимо от изменения мощности сигнала на входе приемника при удалении ракеты от станции НН.

Схема АРУ состоит из дешифратора, включающего в себя линию задержки (ЛЗ-1) и каскад совпадений (Л17), двухкаскадного видеоусилителя (Л18, Л19), детектора (Л19) и трех катодных повторителей (Л16, Л20).

На выходе дешифратора сигнал появляется только в том случае, когда на его вход подается последовательность парных импульсных посылок с интервалом между импульсами в мксек. Каскад совпадений дешифратора (Л17) выдет одиночные импульсы, амплитуда которых пропорциональна входному сигналу приемника. Эти импульсы усиливаются видеоусилителем (Л18, Л19) и подаются на детектор (Л19). На нагрузке детектора образуется напряжение АРУ, которое через один из катодных повторителей (Л20) подается на сетки последних четырех каскадов предварительного УПЧ и первого каскада УПЧ. Второй катодный повторитель (Л20) подается на сетки последних четырех каскадов предварительного УПЧ и первого каскада УПЧ. Второй катодный повторитель (Л20) используется в цепях контроля работы схемы АРУ.

Схема АРУ, выполненная на лампах Д16-Л20, является общей для всего канала приема сигналов. В первом видеотракте канала приема сигналов имеется дополнительная схема АРУ, которая предназначена для повышения точности стабилизации среднего уровня видеоимпульсов управления.

Схема демодуляции предназначена для устранения амплитудной модуляции импульсного сигнала, поступающего в канал синхронизации. Схема состоит из детектора огибающей (Л23), усилителя низкой частоты (Л22) и каскада временной регулировки усиления (Л16).

С выхода второго видеотракта видеоимпульсы поступают на вход детектора огибающей (Л23). Выделенное детектором огибающей синусоидальное напряжение частоты Т гц усиливается однокаскадным усилителем низкой частоты (Л22) и подается на управляющие сетки пятого и шестого каскадов УПЧ (Л6, Л7) в качестве дополнительного смещения. Поэтому коэффициент усиления каскадов УПЧ изменяется с частотой Т гц в противофазе с огибающей усиливаемых импульсов промежуточной частоты, в результате чего глубина модуляции сигнала значительно понижается.

Назначение каскада временной регулировки усиления (Л16) состоит в следующем. Если к моменту перехода станции НБ в режим приема со стробированием сигнал станции НН еще не принимается, то должен быть осуществлен поиск и захват сигнала. Так при этом сигнал на выходе УПЧ отсутствует, схема АРУ выдает минимальное смещение и поэтому усиление УПЧ максимальное. Схема демодуляции работает как быстродействующая автоматическая регулировка усиления, ее постоянная времени значительно меньше, чем в схеме АРУ. Поэтому при приеме первой пары импульсов сигнала схема АРУ не успевает срабатывать, в результате чего в схему демодуляции подается сигнал большой амплитуды. Это вызывает появление настолько большого смещения на сетках пятого и шестого каскадов УПЧ, что на их выходе амплитуда нескольких последующих импульсов резко снижается, и захвата сигнала временным селектором может не произойти.

Каскад временной регулировки усиления запирает усилитель низкой частоты, так что напряжение смещения с выхода лампы Л22 подается на УПЧ только по истечении некоторого времени после приема первых импульсов сигнала. Это обеспечивает уверенный захват временным селектором станции НБ сигналов управления.

Схема контроля СЧК позволяет проверить правильность установления промежуточной частоты, т.е. проконтролировать работу схемы стабилизации частоты клистрона (СЧК).

Схема состоит из буферного каскада УПЧ (Л9), частотного детектора (Л10), видеоусилителя и катодного повторителя (Л11).

Импульсные сигналы промежуточной частоты через буферный каскад УПЧ (Л9) поступает на осциллограф со ждущей разверткой. Характер импульсов, наблюдаемых на экране осциллографа, зависит от величины и знака отклонения промежуточной частоты от ее номинального значения.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5231
Авторов
на СтудИзбе
424
Средний доход
с одного платного файла
Обучение Подробнее