ref-14408 (ИМПУЛЬСНЫЙ УСИЛИТЕЛЬ), страница 2

2016-08-01СтудИзба

Описание файла

Документ из архива "ИМПУЛЬСНЫЙ УСИЛИТЕЛЬ", который расположен в категории "". Всё это находится в предмете "радиофизика и электроника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "радиоэлектроника" в общих файлах.

Онлайн просмотр документа "ref-14408"

Текст 2 страницы из документа "ref-14408"

Ток делителя выбирается равным , где - базовый ток транзистора и вычисляется по формуле:

(мА); (4.1.1)

Тогда:

(мА) (4.1.2)

Напряжение питания рассчитывается по формуле: (В)

Расчёт величин резисторов производится по следующим формулам:

Ом; (4.1.3)

(4.1.4)

(Ом); (4.1.5)

(Ом); (4.1.6)

Данная методика расчёта не учитывает напрямую заданный диапазон температур окружающей среды, однако, в диапазоне температур от 0 до 50 градусов для рассчитанной подобным образом схемы, результирующий уход тока покоя транзистора, как правило, не превышает (10-15)%, то есть схема имеет вполне приемлемую стабилизацию.

4.2 Пассивная коллекторная термостабилизация

Рисунок 4.2 - Схема пассивной коллекторной термостабилизации.

Пусть U=10В

Rк= (Ом); (4.2.1)

Еп=Uкэо+U=10+10=20В (4.2.2)

Rб= =5,36 (кОм) (4.2.3)

Ток базы определяется Rб. При увеличении тока коллектора напряжение на Uкэо падает и следовательно уменьшается ток базы, а это не даёт увеличиваться дальше току коллектора. Но чтобы стал изменяться ток базы, напряжение Uкэо должно измениться на 10-20%, то есть Rк должно быть очень велико, что оправдывается только в маломощных каскадах.

4.3 Активная коллекторная термостабилизация

Рисунок 4.3 - Схема активной коллекторной термостабилизации

Сделаем так чтобы Rб зависело от напряжения Ut. Получим что при незначительном изменении тока коллектора значительно изменится ток базы. И вместо большого Rк можно поставить меньшее на котором бы падало небольшое (порядка 1В) напряжение.

Статический коэффициент передачи по току первого транзистора о1=30. UR4=5В.

R4= = =85 (Ом) (4.3.1)

(4.3.2)

Iко1 = Iбо2 =

Pрас1 = Uкэо1*Iко1 = 5*1,68*10-3 = 8,4 мВт

R2= = =2,38 (кОм) (4.3.3)

R1= = =672 (Ом) (4.3.4)

R3 = (Ом) (4.3.5)

Еп = Uкэо2+UR4 = 10+5 = 15В (4.3.6)

Данная схема требует значительное количество дополнительных элементов, в том числе и активных. При повреждении емкости С1 каскад самовозбудится и будет не усиливать, а генерировать, т.е. данный вариант не желателен, поскольку параметры усилителя должны как можно меньше зависеть от изменения параметров его элементов. Наиболее приемлема эмиттерная термостабилизация.

5. Расчёт параметров схемы Джиаколетто

Рисунок 5.1 - Эквивалентная схема биполярного транзистора (схема

Джиаколетто)

Ск(треб)=Ск(пасп)* =4 =8,9 (пФ), где

Ск(треб)-ёмкость коллекторного перехода при заданном Uкэ0,

Ск(пасп)-справочное значение ёмкости коллектора при Uкэ(пасп).

rб= =33,5 (Ом); gб= =0,03 (Cм), где (5.1)

rб-сопротивление базы,

-справочное значение постоянной цепи обратной связи.

rэ= = =0,835 (Ом), где (5.2)

Iк0 в мА,

rэ-сопротивление эмиттера.

gбэ= = =0,039, где (5.3)

gбэ-проводимость база-эмиттер,

-справочное значение статического коэффициента передачи тока в схеме с общим эмиттером.

Cэ= = =41 (пФ), где (5.4)

Cэ-ёмкость эмиттера,

fт-справочное значение граничной частоты транзистора при которой =1

Ri= =1333 (Ом), где (5.5)

Ri-выходное сопротивление транзистора,

Uкэ0(доп), Iк0(доп)-соответственно паспортные значения допустимого напряжения на коллекторе и постоянной составляющей тока коллектора.

gi=0.75(мСм).

(5.6)

где К0 - коэффициент усиления резисторного каскада

(5.7)

где τв - постоянная времени верхних частот резисторного каскада

(5.8)

где τ - постоянная времени верхних частот

(5.9)

где S0 - крутизна проходной характеристики

(5.10)

где Свх - входная динамическая емкость каскада

(5.11)

(5.12)

(5.13)

где fв - верхняя граничная частота

Из формул 5.6 - 5.11 получим:

(Ом)

(См)

- верхняя граничная частота при условии что на каждый каскад приходится по 0,75 дБ искажений.

Данное значение верхней граничной частоты не удовлетворяет требованиям технического задания, поэтому потребуется введение коррекции.

6. Расчет высокочастотной индуктивной коррекции

Схема высокочастотной индуктивной коррекции представлена на рисунке 6.1.

Рисунок 6.1 - Схема индуктивной высокочастотной коррекции

Высокочастотная индуктивная коррекция вводится для коррекции искажений АЧХ вносимых транзистором. Корректирующий эффект в схеме достигается за счет возрастания сопротивления коллекторной цепи с ростом частоты усиливаемого сигнала и компенсации, благодаря этому, шунтирующего действия выходной емкости транзистора.

Коэффициент усиления каскада в области верхних частот, при оптимальном значении равном:

,

описывается выражением:

,

где ;

;

Очевидно что при неизменном Rк коэффициент усиления К0 - не изменится.

;

в , и параметры рассчитанные по формулам 5.7, 5.8, 5.9.

Lк = 75*6.55*10-9 =4.9*10-9 (Гн)

τк =

fв каскада равна:

7. Промежуточный каскад

7.1 Расчет рабочей точки. Транзистор VT2

Рисунок 7.1 - Предварительная схема усилителя

Возьмем Rк = 800 (Ом).

(Ом)

В

Кроме того при выборе транзистора следует учесть: fв=14 (МГц).

Этим требованиям соответствует транзистор КТ339А. Однако данные о его параметрах при заданном токе и напряжении недостаточны, поэтому выберем следующую рабочую точку:

Iко= 5мА

Uкэо=10В

Таблица 7.1 - Параметры используемого транзистора

Наимено-вание

Обозначение

Значения

Ск

Емкость коллекторного перехода

2 пФ

Сэ

Емкость эмиттерного перехода

4 пФ

Граничная частота транзистора

300 МГц

Βо

Статический коэффициент передачи тока в схеме с ОЭ

100

Температура окружающей среды

25оС

Постоянный ток коллектора

25 мА

Тперmax

Температура перехода

448 К

Pрас

Постоянная рассеиваемая мощность (без теплоотвода)

0,26 Вт

Рассчитаем параметры эквивалентной схемы для данного транзистора используя формулы 5.1 - 5.13.

Ск(треб)=Ск(пасп)* =2 =1,41 (пФ), где

Ск(треб)-ёмкость коллекторного перехода при заданном Uкэ0,

Ск(пасп)-справочное значение ёмкости коллектора при Uкэ(пасп).

rб= =17,7 (Ом); gб= =0,057 (Cм), где

rб-сопротивление базы,

-справочное значение постоянной цепи обратной связи.

rэ= = =6,54 (Ом), где

Iк0 в мА,

rэ-сопротивление эмитера.

gбэ= = =1,51(мСм), где

gбэ-проводимость база-эмитер,

-справочное значение статического коэффициента передачи тока в схеме с общим эмиттером.

Cэ= = =0,803 (пФ), где

Cэ-ёмкость эмиттера,

fт-справочное значение граничной частоты транзистора при которой =1

Ri= =1000 (Ом), где

Ri-выходное сопротивление транзистора,

Uкэ0(доп), Iк0(доп)-соответственно паспортные значения допустимого напряжения на коллекторе и постоянной составляющей тока коллектора.

gi=1(мСм).

(Ом) (7.1)

(7.2)

– входное сопротивление и входная емкость нагружающего каскада.

(7.3)

(См)

- верхняя граничная частота при условии что на каждый каскад приходится по 0,75 дБ искажений. Желательно ввести коррекцию.

7.1.1 Расчет высокочастотной индуктивной коррекции

Схема высокочастотной индуктивной коррекции представлена на рисунке 7.2.

Рисунок 7.2 - Схема высокочастотной индуктивной коррекции

промежуточного каскада

Высокочастотная индуктивная коррекция вводится для коррекции искажений АЧХ вносимых транзистором. Корректирующий эффект в схеме достигается за счет возрастания сопротивления коллекторной цепи с ростом частоты усиливаемого сигнала и компенсации, благодаря этому, шунтирующего действия выходной емкости транзистора.

Расчетные формулы:

,

,

где ;

;

При неизменном Rк коэффициент усиления не будет изменятся.

;

τ ,τв и S0 рассчитываются по 5.7, 5.8, 5.9.

(Гн)

с

= - верхняя граничная частота корректированного каскада при условии что на каждый каскад приходится по 0,75 дБ искажений.

7.1.2 Расчет схемы термостабилизации

Используем эмиттерную стабилизация поскольку был выбран маломощный транзистор, кроме того эмиттерная стабилизация уже применяется в рассчитываемом усилителе. Схема эмиттерной термостабилизации приведена на рисунке 4.1.

Порядок расчета:

1. Выберем напряжение эмиттера , ток делителя и напряжение питания ;

2. Затем рассчитаем .

Напряжение эмиттера выбирается равным порядка . Выберем .

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее