63312 (Усилители на биполярных транзисторах)

2016-07-31СтудИзба

Описание файла

Документ из архива "Усилители на биполярных транзисторах", который расположен в категории "". Всё это находится в предмете "коммуникации и связь" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "коммуникации и связь" в общих файлах.

Онлайн просмотр документа "63312"

Текст из документа "63312"

РЕФЕРАТ

по дисциплине: «Электроника»

на тему:

«Усилители на биполярных транзисторах»

Ростов-на-Дону, 2010 г.

Содержание

1. Виды транзисторных усилителей

2. Основные задачи проектирования транзисторных усилителей

3 Применяемые при анализе схем обозначения и соглашения

4. Статистические характеристики

5. Статические и дифференциальные параметры транзисторов

6. Основные параметры усилителей

7. Обратные связи в усилителях

Список литературы

1. Виды транзисторных усилителей

Усилитель осуществляет увеличение энергии управляющего сигнала за счет энергии вспомогательного источника. Входной сигнал является как бы шаблоном, в соответствии с которым регулируется поступление энергии от источника к потребителю усиленного сигнала.

Электронными называют усилители электрических сигналов с регулирующими элементами на полупроводниковых или электровакуумных приборах.

Прежде чем описывать специфику работы конкретных усилительных каскадов на транзисторах, следует получить четкое представление о том, каково основное предназначение данных каскадов. Ведь усиливаться могут различные показатели электрических сигналов и при различных ограничениях и условиях. Да и само понятие "усиление" иногда требует пояснения.

В общем, возможна классификация усилителей по очень большому количеству признаков, относящихся как к виду выполняемых ими функций, так и к качеству или способу выполнения этих функций. В дальнейшем мы будем придерживаться следующего разделения усилителей на группы.

По виду сигналов, для усиления которых предназначен усилитель:

  • усилители гармонических сигналов (при построении усилителей гармонических сигналов важнейшим является обеспечение минимального уровня вносимых в сигнал искажений);

  • усилители импульсных сигналов (усилители импульсных сигналов обычно используют различные ключевые режимы работы транзисторов, здесь важнейшим фактором является минимизация задержек фронтов и спадов усиливаемых сигналов, а также устранение паразитных выбросов токов и напряжений, неизбежно возникающих при прохождении таких сигналов через каскады усиления).

По способности усиливать постоянные и переменные сигналы:

  • усилители постоянного тока (усилители, обладающие способностью усиливать весьма медленные колебания, в том числе и нулевой частоты, даже в том случае, если они в первую очередь предназначены для усиления мощности или напряжения переменных сигналов);

  • усилители переменного тока (прочие — не обладающие способностью усиливать сигналы нулевой частоты — усилители).

По диапазону частот, на которые рассчитан усилитель:

  • усилители низкой частоты (УНЧ); предназначены для усиления частот звукового диапазона (0,01...20 кГц);

  • усилители высокой частоты (УВЧ); предназначены для усиления сигналов в радиочастотном диапазоне;

По соответствию вида амплитудно-частотной характеристики полосе частот рабочего сигнала:

  • узкополосные усилители; на практике принято называть усилитель узкополосным, если полоса пропускаемых частот уже, чем это минимально необходимо для качественного воспроизведения спектра усиливаемого сигнала (узкополосные УНЧ имеют полосу пропускания менее 2,5...3 кГц; узкополосные УВЧ, например, для применения в телевидении, обладают полосой пропускаемых частот4,5...5 МГц, что меньше минимально необходимого для качественного воспроизведения телевизионного сигнала);

  • широкополосные усилители (часто для уменьшения нелинейных искажений и повышения устойчивости усилителя выгодно реализовывать в нем максимально широкую полосу пропускания, гораздо шире, чем это реально необходимо для всех возможных частот рабочего сигнала);

По форме амплитудно-частотной характеристики:

  • избирательные или резонансные усилители (имеют частотную характеристику полосового фильтра или резонансного колебательного контура);

  • апериодические усилители (имеют частотную характеристику, по форме напоминающую характеристику LС-цепи, т.е. плавно убывающую по мере роста частоты).

По усиливаемому электрическому показателю (данный признак классификации имеет в виду предназначение усилителя):

  • усилители напряжения (определяющим свойством усилителя является усиление напряжения);

  • усилители тока (определяющим свойством усилителя является усиление тока);

  • усилители мощности (под усилителем мощности обычно понимается усилитель или его оконечная выходная часть, рассчитанная на отдачу в цепь внешней нагрузки определенной мощности при заданной величине входного сигнала).

2. Основные задачи проектирования транзисторных усилителей

Любой электронный усилитель требует наличия внешнего источника питания с определенными характеристикам (обусловлены характеристиками самого усилителя). В применении к транзисторным усилительным каскадам это означает, что для всех транзисторов каскада должен обеспечиваться соответствующий режим по постоянному току (поданы внешние напряжения от источников питания) обеспечивающих все практически возможные токи). Задание такого режима, по сути, является заданием рабочей точки транзисторного каскада. Правильное задание рабочей точки пo постоянному току имеет большое значение, поскольку оказывает влияние на многие свойства усилителя (коэффициент усиления, уровень шумов, уровень линейных и нелинейных искажений и т.п.). Вопросу выбора и стабилизации положения рабочей точки транзисторного каскада целиком посвящена глава 3. Но из сказанного здесь читатель должен понять, что существует два существенно различающихся аспекта проектирования транзисторных схем. Первый — это организация питания и установка правильного режима по постоянному току, а второй — обеспечение усиления проходящего через усилитель переменного сигнала. Конечно, между этими двумя задачами существуют определенные пересечения, и в целом невозможно сосредотачиваться на решении одной из них, абсолютно забыв о другой, но они все равно остаются разными задачами, требующими различных подходов к своему решению.

Ясно, что при расчете цепей по постоянному току необходимо оперировать абсолютными значениями токов и напряжений, действующими в цепях, и опираться на соответствующие модели, отражающие работу транзисторов и таких режимах. А вот для анализа поведения схем при подаче на них переменных сигналов указанный метод оказывается неудобным. Действительно, зачем проводить расчеты при полных напряжений и токов в цепях, да еще и изменяющихся во времени, если нас интересует только поведение небольшой переменной составляющей, отражающей уровень полезного сигнала.

Для решения указанной задачи проводится так называемый малосигнальный анализ цепей. При этом используют малосигнальные эквивалентные схемы и группы малосигналъных параметров. Основным допущением, используемым в такой модели, является требование об относительно небольшой величине переменной составляющей посравнению с действующими в цепях постоянными токами и напряжениями. Если это требование нарушается, то большинство результатов, полученных с помощью мало сигнального, анализ не отвечают действительным процессам в цепях — требуется расчет полных токов и напряжений.

3. Применяемые при анализе схем обозначения и соглашения

Прежде всего сделаем ряд пояснений, касающихся таких фундаментальных понятий, как ток и напряжение. Мы не будем здесь подробно описывать физический смысл данных величин, поскольку предполагаем, что хотя бы с этиv читатель уже знаком. Напомним лишь стандартные правила имеющие отношение к представлению токов и напряжений в различных формулах, а также к их изображению на принципиальных схемах. В международной системе единиц напряжение выражают в вольтах (В), а ток в амперах (А).

Как известно, электрический ток — это упорядоченное движение носителей заряда. В любой электрической цепи упорядоченное движение зарядов происходит в одном из двух возможных направлений. Поэтому и электрический ток принято рассматривать как скалярную величину, имеющую одно из возможных направлений. За направление тока, независимо от природы носителей электрического заряда и их типа принимают направление, в котором перемещаются (или мог ли бы перемещаться) носители положительного заряда. Таким образом, направление электрического тока в наиболее распространенных проводниковых материалах — металлах — противоположно фактическому направлению перемещения носителей заряда — электронов. О направлении тока судят по его знаку, который зависит от того, совпадает или нет направление тока с направлением, условно принятым за положительное. Если в результате расчетов, выполненных учетом выбранного направления, ток получится со знаком плюс, то его направление, т.е. направление перемещения положительных зарядов, совпадает с направлением, выбранный за положительное. Если ток будет иметь знак минус, то его направление противоположно условно-положительном). Само условно-положительное направление тока при расчетах электрических цепей может выбираться совершение произвольно (обычно пользуются соображениями удобства расчетов).

Напряжение также представляет собой скалярную величину, которой всегда приписывают определенное направление. Обычно под направлением напряжения понимают направление, в котором под действием электрического поля перемещаются (или могли бы перемещаться) свободные носители положительного заряда. Очевидно, что на участках цепи, в которых не содержатся источники энергии, и перемещение носителей заряда осуществляется за счет энергии электрического поля, направления напряжения и тока совпадают.

При расчетах электрических цепей направление напряжениясравнивается с направлением, условно выбранным за положительное. Если в результате расчетов напряжение на рассматриваемом участке цепи получится со знаком плюс, то Направление напряжения совпадает с направлением, условно принятым за положительное; если напряжение получится со знаком минус, то его направление противоположно условно-положительному.

На принципиальных схемах направления токов и напряжений, принимаемые за условно-положительные, могут показываться стрелками.

Для обзначения токов и напряжений в формулах общепринятым является использование латинских букв I (для токов) и U (для напряжений).

При анализе цепей, находящихся под гармоническими воздействиями, широкое распространение получил символический метод комплексных амплитуд (комплексный метод, или, иногда просто — символический метод). Он основан на представлении гармонических функций с помощью комплексных чисел или, точнее, на преобразовании исходных гармонических функций из временной области (области вещественного переменного t) в частотную область (область мнимою аргумента jw).. Выглядит это так.

Каждой гармонической функции времени a(t)=Ат cos( t +ψ) можно поставить в соответствие копмплекснозначную зависимость

т [cos( t + ψ) + j sin ( t + ψ)] = .

Причем модуль комплексной величины a(t) равен амплитуде гармонической функции = Ат, а аргумент — ее фазе = t + ψ. Сама исходная действительная гармоническая функция равна действительной части введенной таким образом комплекснозначной функции:

Величина называется комплексной амплитудой гармонической функции времени

a(t)=Ат cos( t +ψ).

Известно, что в установившемся режиме работы токи и напряжения всех ветвей линейной электрической цепи, находящейся под гармоническим воздействием, являются функциями времени одной частоты, т.е. токи и напряжения отдельных ветвей в этом случае отличаются только амплитудами и начальными фазами, поэтому полная информация о них при известной частоте содержится в соответствующих комплексных амплитудах. Зная амплитуды и начальные фазы токов или напряжений любой ветви, всегда можно однозначно найти их комплексные амплитуды. И обратно, по известной комплексной амплитуде можно однозначно установить амплитуду и начальную фазу исходного гармонического колебания.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее