63312 (695284), страница 2

Файл №695284 63312 (Усилители на биполярных транзисторах) 2 страница63312 (695284) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Таким образом, каждой гармонической функции времени a(t) можно единственным образом поставить в соответствие комплексное число (комплексную амплитуду), которое можно рассматривать как изображение этой гармонической функции на комплексной плоскости. Причем оказывается, что линейным операциям над гармоническими функциями времени соответствуют линейные операции над их комплексными амплитудами (операции дифференцирования и интегрирования заменяются при этом операциями умножения и деления). Это позволяет существенно упростить анализ линейных цепей, находящихся под гармоническим воздействием, заменив систему интегродифференциальных уравнений, составляемую для мгновенных значений токов и напряжений в ветвях цепи, системой алгебраических уравнений для комплексных амплитуд соответствующих токов и напряжений. Отметим также, что при рассмотрении чисто активных безынерционных линейных цепей (т.е. цепей без фазовых расхождений между сигналами в различных точках) все комплексные амплитуды становятся действительнозначными и анализ сводится к оперированию с простыми действительными амплитудами гармонических функций времени.

Наряду с комплексными амплитудами в качестве изображений гармонических функций на комплексной плоскости широко используются другие комплексные величины — комплексные действующие значения:

Все правила, устанавливающие соответствие между операциями над гармоническими функциями времени и операциями над их комплексными амплитудами, справедливы и для операций над комплексными действующими значениями гармонических функций.

В большинстве реальных усилии тельных схем на транзисторах.допущение о гармоническом характере входных воздействий оказывается вполне работоспособным. Если далее предположить, что цепь линейна (это выполняется, если амплитуда входных воздействий невелика, а транзистор усилителя находится в режиме линейного усиления), то становится вполне возможным применить метод комплексных амплитуд для мало сигнального анализа транзисторных усилительных схем. Более того, мы можем даже избавиться от комнлекснозначности амплитуд, если добавим требование об отсутствии фазовых сдвигов между сигналами, что близко к истине при рассмотрении достаточно низких частот.

Анализируя схемы методом комплексных амплитуд, мы будем говорить о комплексных токах и напряжениях ( ) строго говоря, так обычно называют комплексные действующие значения гармонических токов и напряжений, но для удобства мы часто будем подразумевать именно комплексные амплитудные значения (переход от амплитудных к действующим значениям, как было показано ранее, вообще не оказывает влияния на расчетные формулы).

В схемах при установлении направлений переменных токов и напряжений, заданных комплексными значениями, действуют все те же правила, что были описаны для постоянных токов и напряжений (т.е. знак "плюс" означает совпадение с направлением, условно принятым за положительное, а знак "минус" — несовпадение). Для условно-положительных направлений, когда это возможно, выбираются направления, совпадающие с направлениями реальных токов и напряжений, действующих в анализируемых цепях.

В различной литературе могут использоваться разные способы обозначения амплитуд, действующих значений и других параметров сигналов и схем; мы будем придерживаться следующей системы.

Зависящие от времени (как правило, гармонические) переменные электрические показатели (например, токи и напряжения) в цепях будем обозначать малыми латинскими буквами: i(t), u(t) и т.д. При этом, если нет необходимости делать особый акцент на временной зависимости мгновенных значений этих показателей, если характер данных зависимостей не определен, не имеет значения для рассматриваемого вопроса или если в зависимостях присутствует не только гармоническая, но и постоянная составляющая (показатели вообще могут быть константами), то будем использовать традиционные обозначения большими латинскими буквами: I, U и т.д.

Как правило, нам придется отдельно рассматривать переменные и постоянные составляющие токов и напряжений, в цепях. При этом для обозначения постоянных составляющих мы будем пользоваться дополнительным индексом "0", а для обозначения переменных составляющих — дополнительным индексом "-". Т.е. для полных токов и напряжений в цепях действуют формулы: U=Uо+ , I = Iо + . Заметим, что в большинстве случаев анализ по переменным составляющим проводится методом комплексных амплитуд. Так что вместо зависящих от времени переменных составляющих в получаемые нами формулы можно подставлять комплексные или при определенных условиях даже действительные амплитуды этих составляющих. Обозначение с индексом "-" применяется именно там, где существует возможность вариации подставляемых в формулы значений в зависимости от некоторых условий расчетов (например, проводим ли мы расчеты для низких или для высоких частот, а также используем ли мы действительные, комплекснозначные или определенные во временной области параметры элементов).

Анализируя электрические цепи методом комплексных амплитуд, мы приходим к комплексным значениям некоторых реальных параметров этих схем (комплексные сопротивления, проводимости, коэффициенты усиления и т.п.). Все такие величины обычно не принято обозначать так, как мы это делаем для комплексных амплитуд и действующих значений, — точкой вверху. Для каждого случая, как правило, есть свое устоявшееся обозначение. Объединяет их использование прописных латинских букв (G, Y, Н и т.д.). Соответствующие же малые латинские буквы (g, у,h и т.д.) применяются для обозначения действительной составляющей таких параметров (обычно комплекснозначные параметры становятся действительными при соблюдении определенных условий, применение в формулах малых латинских букв означает, что данные условия предполагаются выполненными).

Заметим также, что иногда параметры элементов схем могут зависеть от того, рассматриваем ли мы поведение данного элемента под действием постоянных токов и напряжений или делаем то же самое для их переменных составляющих. В общем случае нет какой-то универсальной методики различения таких параметров — следует внимательно читать текстовые комментарии и понимать суть физических процессов в цепях. Однако часто речь идет о так называемых статических и дифференциальных параметрах. Мы будем придерживаться системы, когда буквенный индекс, сопровождающий статические параметры, пишется с прописной буквы ( и т.п.), а буквенный индекс, сопровождающий дифференциальные параметры, — с малой буквы и т.п.). В случаях, когда разница между статическими и дифференциальными параметрами отсутствует, чаще применяется написание с прописными буквами. Если у параметра нет буквенного индекса или для него по каким-либо причинам неудобно менять размер используемых букв в индексе, то возможен переход к малой букве в обозначении самого дифференциального параметра ( и т.п.).

4. Статистические характеристики

При анализе усилительных схем на транзисторах широко используются т.н. статические характеристики: Статическими характеристиками транзисторов называют графики, выражающие функциональную связь между постоянными токами и напряжениями на электродах транзистора.

В зависимости от того, какие токи и напряжения принимаются за независимые переменные, возможны различные" системы функциональной связи и соответствующие им семейства статических характеристик. В общем случае связь между токами и напряжениями на трех электродах транзистора можно выразить шестью различными системами (по четыре семейства характеристик в каждой системе).

Мы не будем здесь рассматривать все эти случаи, а обратимся сразу к системе, получившей наибольшее распространение. Это т.н. система статических параметров (или гибридная система), которая соответствует наиболее распространенной группе малосигнальных параметров и имеет ряд преимуществ перед другими системами.

В данной системе в качестве независимых переменных приняты входной ток и выходное напряжение:

В статическом режиме эти зависимости выражаются четырьмя семействами характеристик:

входными

выходными

обратной связи

прямой передачи

Заметим, что для разных схем включения транзистора в качестве входных и выходных выступают токи и напряжения на его различных электродах. Поэтому вид статических характеристик зависит от схемы включения транзистора.

Для однозначного установления зависимости между токами и напряжениями транзистора достаточно иметь два семейства характеристик из четырех названных. Другие два могут быть найдены с помощью перестроений. На практике наибольшее распространение получили входные и выходные характеристики. Характеристики прямой передачи и обратной связи обычно выступают в роли второстепенных.

Статические характеристики имеют большое значение при анализе работы самых разнообразных усилительных схем. По статическим характеристикам выбираете оптимальное положение рабочей точки транзистора по постоянному току, вычисляются допустимые амплитуды колебаний переменного напряжения и тока на входе усилителя, анализируется линейность усиления и многие другие показатели схемы. По выходным характеристикам можно определить, правильно ли согласован усилительный каскад с нагрузкой, и предсказать поведение этого каскада при изменениях характера нагрузки.

В реальных схемах транзисторных усилителей в качестве входных токов и напряжений выступают напряжения и токи на конкретных электродах. Например, для схемы с ОЭ входным напряжением будет напряжение на участке эмиттер—база( ), а выходным током — ток коллектора (IК). Часто статические характеристики транзисторных схем называют по имени электрода, ток которого эти характеристики отражают. Так, в приведенном выше случае мы будем говорить о выходных коллекторных характеристиках.

5. Статические и дифференциальные параметры транзисторов

Выше мы уже упоминали о наличии у транзисторов гак называемых малосигнальных параметров. Теперь поговорим об этом подробнее. Такие параметры характеризуют работу транзистора в режиме усиления малых переменных токов и напряжений. Многие из них имеют четкую физическую интерпретацию и непосредственно присутствуют в физических эквивалентных схемах. Некоторые же допускают только чисто математическое толкование. Смысл большинства из этих параметров сохраняется и при переходе к анализу больших сигналов, но их значения изменяются и становятся зависимыми от множества не проявлявшихся при малых сигналах факторов.

Поскольку малосигнальные параметры — это параметры, отражающие работу транзистора для переменных составляющих токов и напряжений, то в большинстве случаев они являются дифференциальными эквивалентами некоторых интегральных (статических) величин, характеризующих работу на постоянном токе. Отсюда возникает второе, употребляемое иногда даже чаще, название малосигнальных параметров — дифференциальные параметры. Между двумя этими терминами не существует однозначной эквивалентности, но почти всегда речь идет об одном и том же.

В качестве примера можем рассмотреть такой важный параметр биполярного транзистора, как коэффициент передачи тока базы в схеме с ОЭ ( ). У этого параметра есть еще одно часто встречающееся обозначение, идущее от его роли в системе так называемых h-параметров проходного линейного четырехполюсника — или

Интегральный (статический) коэффициент передачи находится как отношение токов (рис. 1):


Рис.1. К вычислению интегрального и дифференциального коэффициента передачи тока базы

Если рассмотреть характеристику передачи транзистора, включенного по схеме с ОЭ (рис. 2.1), то можно видеть, что в точке А, соответствующей напряжениям и токам , , , статический коэффициент передачи равен:

Характеристики

Тип файла
Документ
Размер
2,27 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6552
Авторов
на СтудИзбе
299
Средний доход
с одного платного файла
Обучение Подробнее